Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 15N balance  (3)
  • nitrous oxide  (2)
  • 1
    ISSN: 1432-0789
    Keywords: Nitrification ; Denitrification ; Nitrification inhibitors ; 15N balance ; Nitrous oxide ; Greenhouse gases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effectiveness of wax-coated calcium carbide (as a slow-release source of acetylene) and nitrapyrin in inhibiting nitrification and emission of the greenhouse gases N2O and CH4 was evaluated in a microplot study with dry-seeded flooded rice grown on a grey clay near Griffith, NSW, Australia. The treatments consisted of factorial combinations of N levels with nitrification inhibitors (control, wax-coated calcium carbide, and nitrapyrin). The rate of nitrification was slowed considerably by the addition of wax-coated calcium carbide, but it was inhibited only slightly by the addition of nitrapyrin. As a result, the emission of N2O was markedly reduced by the application of wax-coated calcium carbide, whereas there was no significant difference in rates of N2O emission between the control and nitrapyrin treatments. Both nitrification inhibitors significantly reduced CH4 emission, but the lowest emission rates were observed in the wax-coated calcium carbide treatment. At the end of the experiment 84% of the applied N was recovered from the wax-coated calcium carbide treatment compared with ∼ 43% for the nitrapyrin and control treatments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Denitrification ; Flooded soil ; 15N ; Urea ; 15N balance ; Wetland rice ; Oryza sativa L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary It is commonly assumed that a large fraction of fertilizer N applied to a rice (Oryza sativa L.) field is lost from the soil-water-plant system as a result of denitrification. Direct evidence to support this view, however, is limited. The few direct field, denitrification gas measurements that have been made indicate less N loss than that determined by 15N balance after the growing season. One explanation for this discrepancy is that the N2 produced during denitrification in a flooded soil remains trapped in the soil system and does not evolve to the atmosphere until the soil dries or is otherwise disturbed. It seems likely, however, that N2 produced in the soil uses the rice plants as a conduit to the atmosphere, as does methane. Methane evolution from a rice field has been demonstrated to occur almost exclusively through the rice plants themselves. A field study in Cuttack, India, and a greenhouse study in Fort Collins, Colorado, were conducted to determine the influence of rice plants on the transport of N2 and N2O from the soil to the atmosphere. In these studies, plots were fertilized with 75 or 99 atom % 15N-urea and 15N techniques were used to monitor the daily evolution of N2 and N2O. At weekly intervals the amount of N2+N2O trapped in the flooded soil and the total-N and fertilized-N content of the soil and plants were measured in the greenhouse plots. Direct measurement of N2+N2O emission from field and greenhouse plots indicated that the young rice plant facilitates the efflux of N2 and N2O from the soil to the atmosphere. Little N gas was trapped in the rice-planted soils while large quantities were trapped in the unplanted soils. N losses due to denitrification accounted for only up to 10% of the loss of added N in planted soils in the field or greenhouse. The major losses of fertilizer N from both the field and greenhouse soils appear to have been the result of NH3 volatilization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0867
    Keywords: nitrification ; denitrification ; 15N balance ; nitrogen loss
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Poor N fertilizer use efficiency by flooded rice is caused by gaseous losses of N. Improved fertilizer management and use of nitrification inhibitors may reduce N losses. A microplot study using15N-labelled urea was conducted to investigate the effects of fertilizer application method (urea broadcast, incorporated, deep-placed) and nitrification inhibitor [encapsulated calcium carbide (ECC)] treatments on emission of N2+N20 and total loss of applied N on a grey clay near Griffith, NSW, Australia. Both incorporation and deep placement of urea decreased N2+N2O emission compared to urea broadcast into the floodwater. Addition of ECC significantly (P 〈 0.05) reduced emission of N2+N20 from incorporated or deep-placed urea and resulted in increased exchangeable ammonium concentrations in the soil in both treatments. Fifty percent of the applied N was lost when urea was broadcast into the floodwater. Total N loss from the applied N was significantly (P 〈 0.05) reduced when urea was either incorporated or deep placed. In the presence of ECC the losses were reduced further and the lowest loss (34.2% of the applied N) was noted when urea was deep-placed with ECC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 57 (2000), S. 107-117 
    ISSN: 1573-0867
    Keywords: N-fertilizer ; nitrous oxide ; climate change
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In most soils, formation and emissions of N2O to the atmosphere are enhanced by an increase in available mineral nitrogen (N) through increased rates of nitrification and denitrification. Therefore, addition of N, whether in the form of organic or inorganic compounds eventually leads to enhanced N2O emissions. Global N2O emissions from agricultural systems have previously been related primarily to fertilizer N input from synthetic sources. Little attention has been paid to N input from other N sources or to the N2O produced from N that has moved through agricultural systems. In a new methodology used to estimate N2O emissions on the country or regional scale, that is briefly described in this paper, the anthropogenic N input data used include synthetic fertilizer, animal waste (feces and urine) used as fertilizer, N derived from enhanced biological N-fixation through N2 fixing crops and crop residue returned to the field. Using FAO database information which includes data on synthetic fertilizer consumption, live animal production and crop production and estimates of N input from recycling of animal and crop N, estimates of total N into Asian agricultural systems and resulting N2O emissions are described over the time period 1961 through 1994. During this time the quantity and relative amounts of different types of materials applied to agricultural soils in Asia as nitrogen (N) fertilizer have changed dramatically. In 1961, using the earliest entry from the FAO database, of the approximately 15.7 Tg of fertilizer N applied to agricultural fields 2.1 Tg N (13.5% of total N applied) was from synthetic sources, approximately 6.9 Tg N from animal wastes, 1.7 Tg N from biological N-fixation, and another 5 Tg N from reutilization of crop residue. In 1994, 40.2 Tg from synthetic fertilizer N (57.8% of total), 14.2 Tg from animal wastes, 2.5 Tg from biological N-fixation and 12.6 Tg from crop residue totalling 69.5 Tg N were utilized within agricultural soils in all Asian countries. The increases in N utilization have increased the emission of nitrous oxide from agricultural systems. Estimated N2O from agricultural systems in Asia increased from about 0.8 Tg N2O-N in 1961 to about 2.1 in 1994. The period of time when increases in N input and resulting N2O emissions were greatest was during 1970–1990. This evaluation of N input into Asian agricultural systems and the resulting N2O emissions demonstrates the large change in global agriculture that has occurred in recent decades. Because of the increased need for food production increases in N input are likely. Although the rate of increase of N input and N2O emissions during the 1990s appears to have declined, we ask if this slowed rate of increase is a general long term trend or if global food production pressures will tend to accelerate N input demand and resulting N2O emissions as we move into the 21st century.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 46 (1996), S. 127-134 
    ISSN: 1573-0867
    Keywords: forage ; irrigation ; methane ; nitrogen fertilizer ; nitrous oxide ; mountain meadow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Forage production in irrigated mountain meadows plays a vital role in the livestock industry in Colorado and Wyoming. Mountain meadows are areas of intensive fertilization and irrigation which may impact regional CH4 and N2O fluxes. Nitrogen fertilization typically increases yields, but N-use efficiency is generally low. Neither the amount of fertilizer-N recovered by the forage nor the effect on N2O and CH4 emissions were known. These trace gases are long-lived in the atmosphere and contribute to global warming potential and stratospheric ozone depletion. From 1991 through 1993 studies were conducted to determine the effect of N source, and timing of N-fertilization on forage yield, N-uptake, and trace gas fluxes at the CSU Beef Improvement Center near Saratoga, Wyoming. Plots were fertilized with 168 kg N ha-1. Microplots labeled with15N-fertilizer were established to trace the fate of the added N. Weekly fluxes of N2O and CH4 were measured during the snow-free periods of the year. Although CH4 was consumed when soils were drying, flood irrigation converted the meadow into a net source of CH4. Nitrogen fertilization did not affect CH4 flux but increased N2O emissions. About 5% of the applied N was lost as N2O from spring applied NH4NO3, far greater than the amount lost as N2O from urea or fall applied NH4NO3. Fertilizer N additions increased forage biomass to a maximum of 14.6 Mg ha-1 with spring applied NH4NO3. Plant uptake of N-fertilizer was greater with spring applications (42%), than with fall applications (22%).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...