Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 188 (1993), S. 579-585 
    ISSN: 1432-0568
    Keywords: Human embryo ; Paraxial mesenchyme ; Sclerotome ; Lectins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The paraxial mesenchyme in seven human embryos aged between Carnegie stages 12 and 17 was studied by lectin histochemistry with the lectins AIA, Con A, GSA II, LFA, LTA, PNA, RCA I, SBA, SNA, WGA. The paraxial mesenchyme was found to be segmented into sclerotomes by intersegmental vessels and from late stage 12 by intrasclerotomal clefts dividing each sclerotome into a cranial and caudal half. The lectins Con A, GSA II, LFA, LTA, SBA and SNA did not react at all in the paraxial mesenchyme. Staining for AIA, PNA, RCA I and WGA was found in the developing sclerotomes. However, no differences in the staining pattern between the two sclerotomal halves could be seen. It was striking that in contrast to the chick embryo no differences in binding for PNA between the cranial and caudal sclerotomal parts was observed. These findings reveal that PNA-binding sites do not play the same functional role in segmented axonal outgrowth and neural crest immigration into cranial sclerotomal halves in the human embryo, as found in chick embryonic development. Beginning with the stage 16-embryo, the already condensed caudal sclerotomal halves express Con A-, RCA- and PNA-binding sites. The staining for PNA in particular marked the differentiation of chondrogenous structures developing in this half. From the late stage 12 or stage 13, the walls of intersegmental and other vessels showed binding sites for AIA, PNA, RCA I, SNA and WGA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 83 (1992), S. 308-314 
    ISSN: 1432-0533
    Keywords: Large T-antigen ; Transgenic mice ; Pineal cell tumors ; Pineal organ ; Primitive neuroectodermal tumors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Adult transgenic mice expressing the large T-antigen of the Simian virus 40 (SV 40) under the control of the Moloney murine sarcoma virus (MSV) enhancer and the SV 40 promoter develop inheritable uniform midline brain neoplasms showing features of primitive neuroectodermal tumors. The origin and histogenesis of these tumors were investigated in the present study. The brain and pineal organ of fetal and young transgenic mice less than 3 months old displayed normal macroscopic and microscopic features. In 3.5-month-old animals, the pineal organ was considerably enlarged due to hyperplasia, finally leading to tumor formation. Immunocytochemical demonstration of large T-antigen showed that this oncoprotein was already expressed in the nuclei of certain cells in the pineal organ of fetuses (16 and 18 days old) and newborn animals, but was absent from all other parts of the brain. The immunocytochemical demonstration of S-antigen (arrestin), a highly characteristic marker for pinealocytes, was used for further characterization of the large T-antigenimmunoreactive cells. The fetal pineal organ did not contain immunoreactive S-antigen. This first occurred in certain pinealocytes of newborn mice. Double immunostaining revealed that in newborn and older transgenic mice the immunoreactive large T-antigen was exclusively found in nuclei of cells containing S-antigen immunoreaction in their cytoplasm. Thus, transformed pinealocytes appear as stem cells of the experimental tumors. The results of this study suggest that primitive neuroectodermal tumors and the normal tissue from which they originate share certain molecular and immunocytochemical features.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 184 (1991), S. 345-353 
    ISSN: 1432-0568
    Keywords: Human embryo ; Lectins ; Spine ; Vertebral development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Paraffin sections from vertebral columns of ten human embryos and fetuses ranging from stage 16 to the 12th week were stained with the FITC-coupled lectins PNA, RCA I, Con A and WGA in order to investigate changes in carbohydrate-binding sites during vertebral development. PNA revealed a specific binding site in the vertebral body blastema in the precartilaginous stage of development. Beginning with the 25-mm CRL embryo, PNA-binding sites occurred in the developing fibrous annulus and the inner zone of the intervertebral discs. The first binding sites for RCA I were seen in the extracellular matrix of vertebral bodies during the cartilaginous stage of vertebral development. During early ossification of the vertebrae, staining for RCA I-binding sites in the cytoplasm of the chondrocytes and the area around the future cartilaginous end-plates was observed. Con A bound to the chondrocyte cytoplasm, and also very strongly to notochordal cells in all developmental stages examined. WGA-binding sites appeared simultaneously with cartilage formation. Connective tissue components, e.g. ligaments, were diffusely stained by WGA. Also this lectin showed an affinity for vertebral body chondrocytes. We discuss the biochemical aspects of these lectin-binding sites, and their possible roles in the differentiation process of the human vertebral column. The results of this first lectin histochemical study on human vertebral development are compared with related results in other species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 193 (1996), S. 43-51 
    ISSN: 1432-0568
    Keywords: Type II collagen ; Human embryo ; Non-radioactive in situ hybridization ; Vertebral column ; Cartilage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The role of extracellular matrix molecules in ontogenetic differentiation processes is a matter of increasing interest. In cartilage development, type II collagen is suspected of promoting chondrogenic differentiation, since its expression has been demonstrated in a range of precartilaginous tissues of vertebrate species. Up to now, no studies supplying a coherent description of type II collagen expression in the skeletogenesis of human embryos including early embryonic stages have been published. In this work, we examine the temporal and spatial distribution of type II collagen mRNA during vertebral column development in human embryos from 4 to 12 weeks of gestation using non-radioactive in situ hybridization. The onset of gene expression was demonstrable in the 5th week in precartilaginous mesenchymal cells and in notochordal cells. Additionally, we found a weaker hybridization signal in the mesenchymal precursors of the intervertbral discs. In the anlagen of the axial skeleton, type II collagen expression decreased during osteogenic reconstruction in the 11th/12th week, whereas expression continued in the notochordal remnants of the future nuclei pulposi. The results suggest a relatively late occurrence of type II collagen in human vertebral development compared with other vertebrate species. The distribution of gene expression is concordant with a possible role of this molecule in promoting differentiation of mesenchymal cells into chondrocytes. The mechanism of this influence remains to be established.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1238
    Keywords: Transfusion ; Oxygen transport ; 2,3 Diphosphoglycerate ; Respiratory failure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The goals of management of patients with respiratory failure include improving arterial oxygenation with PEEP and red cell transfusion to maintain oxygen carrying capacity, both of which contribute to improving tissue oxygen delivery. However, standard CPD-stored blood is rapidly depleted of 2,3 diphosphoglycerate (2,3 DPG) and ATP, with resultant inadequacy of the red cell oxygen transport function. In 15 patients requiring mechanical ventilation with PEEP whose initial Hct≤35%, we studied the effect of transfusion of 7 ml/kg of CPD-stored packed red blood cells on hemodynamic and oxygen delivery variables, pulmonary venous admixture (QA/QT), and erythrocytic P50, 2,3 DPG and ATP concentrations. Hemodynamics were not significantly altered by transfusion. 2,3 DPG decreased significantly from 14.5±1.1 to 13.1±1.5 mcmol/g Hb (mean±SD, p〈0.05). There was no significant change in P50 or ATP. QA/QT rose significantly, from 20.1±7.8 to 28.9±12.3% (mean±SD, p〈0.02). In our patients, an increase in arterial oxygen content obtained by transfusion was not followed by any associated decrease in cardiac work, as implied by solution of equations for oxygen delivery and oxygen consumption. The rise in QA/QT is undesirable in patients requiring PEEP, since it complicates management of their mechanical ventilatory support.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...