Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0738
    Keywords: 2,4-Dichlorophenoxyacetic acid ; Biogenic amines ; Brain ; Cerebrospinal fluid ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Effects of single subcutaneous doses of sodium 2,4-dichlorophenoxyacetate (2,4-D-Na) on biogenic amines and their acidic metabolites in rat brain and cerebrospinal fluid (CSF) were analyzed by high pressure liquid chromatography. After 200 mg/kg 2,4-D-Na, the cerebral concentration of 5-hydroxytryptamine (5-HT) was increased slightly and that of 5-hydroxyindoleacetic acid (5-HIAA) roughly 3-fold between 1 and 8 h after the administration. There was also a tendency towards slightly lowered dopamine (DA) levels. No statistically significant changes in brain concentrations of noradrenaline (NA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) or tryptophan (TRY) were found. At the same time, however, the maximal increase in DOPAC, HVA and 5-HIAA concentrations in the CSF was 2.3–5.8-fold. The dependency of biogenic amines and metabolites on 2,4-D-Na dose was studied by injecting s.c. 0, 10, 30 and 100 mg/kg and sacrificing the rats at 2 h. In the brain, there was a dose-dependent increase in concentrations of 5-HIAA (at the two highest doses) and HVA (at the highest dose) while in the CSF those of all three acidic metabolites increased at the two highest doses. The 10 mg/kg dose had no effect. The results agree with the hypothesis that 2,4-D inhibits the organic acid transport out of the brain, which should then result in increased cerebral levels of acidic metabolites of biogenic amines, but it may also have effects on the activity of serotoninergic and dopaminergic neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0738
    Keywords: Key words 2 ; 3 ; 7 ; 8-Tetrachlorodibenzo-p-dioxin ; Species differences ; Acute toxicity ; Serotonin ; Tryptophan ; Gluconeogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  We have previously reported that in rats 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) lethality is associated (although not necessarily causally) with changes in brain serotonin (5-HT) metabolism. In the present study, we have examined whether this holds for other species by comparing the effect of TCDD in the most TCDD-susceptible and the most TCDD-resistant species, guinea pigs and hamsters, respectively. Body weight gain of guinea pigs exposed to TCDD (0.3–2.7 μg/kg) diminished dose dependently, while the effect was marginal in hamsters (900–4600 μg/kg). Brain 5-hydroxyindoleacetic acid (the main metabolite of brain 5-HT), brain tryptophan (the precursor amino acid of 5-HT), and plasma free and total tryptophan were not affected at any dose in guinea pigs. In contrast, 4 days after exposure, the levels of plasma free and total tryptophan were consistently increased in hamsters. These, as well as brain tryptophan, were still elevated 10 days after exposure. TCDD did not affect plasma glucose level in either species. Liver glycogen was decreased in a dose-dependent manner in TCDD-treated guinea pigs as well as in their pair-fed controls on day 10. There was no change in liver glycogen in hamsters. The activity of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase was only depressed in hamsters by all doses of TCDD. We conclude that changes in tryptophan metabolism or in carbohydrate homeostasis cannot explain the wide interspecies differences in susceptibility to the acute lethality of TCDD, although they may correlate with some aspects of its toxicity in certain species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...