Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: 66.30jt ; 61.70Wp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Using the hydrogen neutralization of the boron acceptor, the diffusion of hydrogen is investigated in the temperature range 20 °–160 °C. The hydrogenation is performed by low-energy implantation. We observe a fast initial hydrogen migration, followed by a long-time diffusion phase that is described by an effective diffusion coefficientD eff=D 0 eff exp(−E a/kT) withD 0 eff–cm2s−1 andE a=(0.83±0.05) eV. No deeper hydrogen migration is detected for implantation times longer than − 30 min. Our data are explained by the build-up of a large amount of molecular hydrogen beneath the surface, which strongly hinders the transfer of the implanted hydrogen to the bulk. The thermal reactivation kinetics of the neutralized boron show a rapid initial step followed by a longtime thermally activated second order phase, which is limited by the recombination of hydrogen into molecules.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...