Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biomedical science 1 (1994), S. 93-99 
    ISSN: 1423-0127
    Keywords: Common allergenic epitope ; Minor allergen ; Bermuda grass pollen ; Cyn dI ; Lol pI
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The present study disclosed the cross-reactivity between Bermuda grass pollen (BGP) and other grass pollens using monoclonal antibodies (MAbs) and polyclonal antiserum. MAb 9–13, directed against a group of minor allergens of BGP (Cyn d Bd68K, 48K, 38K) was found to cross-react with extracts of ten other grass pollens. Immunoblotting assays illustrated that MAb 9–13 cross-reacted with multiple components of most of these pollens, and the major cross-reactive components had molecular weights of 29–36 kD. The cross-reactivity between BGP andLol pI, the group I allergen of rye grass pollen, was further evaluated;Lol pI was recognized by MAb 9–13, but not by our MAbs/polyclonal antiserum againstCyn dI, the major allergen of BGP. These results suggest that the epitope recognized by MAb 9–13 is a common (C) epitope shared byLol pI andCyn d Bd68K, 48K, 38K, andCyn dI does not share significant antigenicity withLol pI. In a modified radio-allergosorbent test, IgE antibodies in the serum of BGP-allergic patients reacted mildly with C-epitope-bearing components of both BGP and rye grass pollens, and this binding could be blocked specifically by MAb 9–13. This suggests that in addition to an antigenic cross-reaction, the C epitope can also lead to an allergenic cross-reaction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 59 (1994), S. 617-621 
    ISSN: 1432-0630
    Keywords: 78.30.Fs ; 68.55.Nq ; 61.70.At
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Various spots in GaAs, In-diffused with the 1.064 μm line of pulsed Nd:YAG laser with several energy densities, have been characterized and compared with samples prepared by the conventional rapid thermal annealing method. Of the energy densities used, the spot processed with an energy density of 7 J/cm2 shows In x Ga1−x As phases with an indium concentration of 60% and below. An abrupt boundary in the indium concentration is observed at the edge of the laser-annealed spot. The diffusion depth is found to be less than 1000 Å. The spot processed with an energy density of 14 J/cm2 shows considerable damage from the irradiation resulting in strain in the lattice. The samples prepared by the thermal annealing method show similar results to the laser-diffused samples. However, these thermally annealed samples suffer from arsenic loss unlike the laser-processed samples. It can be concluded that laser-induced alloying of indium into GaAs can be achieved with less arsenic loss than the thermal annealing method.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...