Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 49 (1987), S. 1053-1081 
    ISSN: 1572-9613
    Keywords: Percolation ; phase separation ; Monte Carlo simulation ; lattice gas model ; finite-size scaling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The percolation transition of geometric clusters in the three-dimensional, simple cubic, nearest neighbor Ising lattice gas model is investigated in the temperature and concentration region inside the coexistence curve. We consider “quenching experiments,” where the system starts from an initially completely random configuration (corresponding to equilibrium at infinite temperature), letting the system evolve at the considered temperature according to the Kawasaki “spinexchange” dynamics. Analyzing the distributionn l(t) of clusters of sizel at timet, we find that after a time of the order of about 100 Monte Carlo steps per site a percolation transition occurs at a concentration distinctly lower than the percolation concentration of the initial random state. This dynamic percolation transition is analyzed with finite-size scaling methods. While at zero temperature, where the system settles down at a frozen-in cluster distribution and further phase separation stops, the critical exponents associated with this percolation transition are consistent with the universality class of random percolation, the critical behavior of the transient time-dependent percolation occurring at nonzero temperature possibly belongs to a different, new universality class.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of computer-aided materials design 2 (1995), S. 1-8 
    ISSN: 1573-4900
    Keywords: Monte Carlo ; Modelling ; BPA-PC ; Ellipsoidal model ; Non-spherical interactions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary We introduce a new general model for the simulation of dense macromolecular systems. It consists of basic ellipsoidally shaped units stringed together to form chains, including branched and side chains. The ellipsoidally shaped unit can vary in its principal axes, allowing for flexible modeling of a chain. The variation in the main principal axis is used for the intramolecular potential of the bond type. Intramolecular units interact through a harmonic bond-angle potential and the intermolecular interaction is modelled by a confocally decreasing Lennard-Jones potential. We present the model for the special case of a polycarbonate and indicate the generalization to other cases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 94 (1994), S. 301-309 
    ISSN: 1434-6036
    Keywords: 05.50 ; 75.10.H
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract This paper describes the application of finite-size scaling concepts to domain growth in systems with a non-conserved order parameter. A finite-size-scaling ansatz for the time-dependent order parameter distribution function is proposed, and tested with extensive Monte-Carlo simulations of domain growth in the 2-D spin-flip kinetic Ising model. The scaling properties of the distribution functions serve to elucidate the configurational self-similarity that underlies the dynamic scaling picture. Moreover, it is demonstrated that the application of finite-size-scaling techniques facilitates the accurate determination of the bulk growth exponent even in the presence of strong finite-size effects, the scale and character of which are graphically exposed by the order parameter distribution function. In addition it is found that one commonly used measure of domain size-the scaled second moment of the magnetisation distribution-belies the full extent of these finite-size effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...