Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 7116-7126 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We describe a Monte Carlo scheme for simulating polydisperse fluids within the grand canonical ensemble. Given some polydisperse attribute σ, the state of the system is described by a density distribution ρ(σ) whose form is controlled by the imposed chemical potential distribution μ(σ). We detail how histogram extrapolation techniques can be employed to tune μ(σ) such as to traverse some particular desired path in the space of ρ(σ). The method is applied in simulations of size-disperse hard spheres with densities distributed according to Schulz and log-normal forms. In each case, the equation of state is obtained along the dilution line, i.e., the path along which the scale of ρ(σ) changes but not its shape. The results are compared with the moment-based expressions of Monsoori et al. [J. Chem. Phys. 54, 1523 (1971)] and Salacuse and Stell [J. Chem. Phys. 77, 3714 (1982)]. It is found that for high degrees of polydispersity, both expressions fail to give a quantitatively accurate description of the equation of state when the overall volume fraction is large. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 94 (1994), S. 301-309 
    ISSN: 1434-6036
    Keywords: 05.50 ; 75.10.H
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract This paper describes the application of finite-size scaling concepts to domain growth in systems with a non-conserved order parameter. A finite-size-scaling ansatz for the time-dependent order parameter distribution function is proposed, and tested with extensive Monte-Carlo simulations of domain growth in the 2-D spin-flip kinetic Ising model. The scaling properties of the distribution functions serve to elucidate the configurational self-similarity that underlies the dynamic scaling picture. Moreover, it is demonstrated that the application of finite-size-scaling techniques facilitates the accurate determination of the bulk growth exponent even in the presence of strong finite-size effects, the scale and character of which are graphically exposed by the order parameter distribution function. In addition it is found that one commonly used measure of domain size-the scaled second moment of the magnetisation distribution-belies the full extent of these finite-size effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...