Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1238
    Keywords: Key words Perflubron ; Partial liquid ventilation ; Nitric oxide ; ARDS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Objective: To assess the effects of increasing concentrations of inhaled nitric oxide (NO) during incremental dosages of partial liquid ventilation (PLV) on gas exchange, hemodynamics, and oxygen transport in pigs with induced acute lung injury (ALI). Design: Prospective experimental study. Setting: Experimental intensive care unit of a university. Subjects: 6 pigs with induced ALI. Interventions: Animals were surfactant-depleted by lung lavage to a partial pressure of oxygen in arterial blood (PaO2) 〈 100 mmHg. They then received four incremental doses of 5 ml/kg perflubron (LiquiVent). Between each dose the animals received 0, 10, 20, 30, 40, and 0 parts per million (ppm) NO. Measurements and main results: Blood gases, hemodynamic parameters, and oxygen delivery were measured after each dose of perflubron as well as after each NO concentration. Perflubron resulted in a dose-dependent increase in PaO2. At each perflubron dose, additional NO inhalation resulted in a further significant (ANOVA, p 〈 0.05) increase in PaO2, with a maximum effect at 30 ± 10 ppm NO. The 5 ml/kg perflubron dose led to a significant decrease in mean pulmonary artery pressure, which decreased further with higher NO concentrations. Conclusions: PLV can be combined with NO administration and results in a cumulative effect on arterial oxygenation and to a decrease in pulmonary artery pressure, without having any deleterious effect on measured systemic hemodynamic parameters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1238
    Keywords: Key wordsK. pneumoniae ; Bacteremia ; Mechanical ventilation ; Blood gases ; Animal ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Objective: To determine the effect of peak inspiratory pressure (PIP) and positive end-expiratory pressure (PEEP) on the development of bacteremia with Klebsiella pneumoniae after mechanical ventilation of intratracheally inoculated rats. Design: Prospective, randomized, animal study. Setting: Experimental intensive care unit of a University. Subjects: Eighty male Sprague Dawley rats. Interventions: Intratracheal inoculation with 100 μl of saline containing 3.5–5.0 × 105 colony forming units (CFUs) K. pneumoniae/ml. Pressure-controlled ventilation (frequency 30 bpm; I/E ratio = 1 : 2; FIO2 = 1.0) for 180 min at the following settings (PIP/PEEP in cmH2O): 13/3 (n = 16); 13/0 (n = 16); 30/10 (n = 16) and 30/0 (n = 16), starting 22 h after inoculation. Arterial blood samples were obtained and cultured before and 180 min after mechanical ventilation and immediately before sacrifice in two groups of non-ventilated control animals (n = 8 per group). After sacrifice, the lungs were homogenized to determine the number of CFUs K. pneumoniae. Measurements and results: The number of CFUs recovered from the lungs was comparable in all experimental groups. After 180 min, 11 animals had positive blood cultures for K. pneumoniae in group 30/0, whereas only 2, 0 and 2 animals were positive in 13/3, 13/0 and 30/10, respectively (p 〈 0.05 group 30/0 versus all other groups). Conclusions: These data show that 3 h of mechanical ventilation with a PIP of 30 cmH2O without PEEP in rats promotes bacteremia with K. pneumoniae. The use of 10 cmH2O PEEP at such PIP reduces ventilation-induced K. pneumoniae bacteremia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...