Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acetylcholinesterase  (1)
  • Intestine  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 140 (1973), S. 261-275 
    ISSN: 1432-0878
    Keywords: Brain ; Hypothalamo-hypophysial system ; Xenopus laevis, tadpoles ; Monoamine oxidase ; Acetylcholinesterase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distribution of monoamine oxidase (MAO) in the brain of Xenopus laevis tadpoles (stage 52–56) was studied histochemically with a modified Glenner's tryptamine-tetrazolium method. A moderate activity was observed in fibre regions of the striatum and septum (including the medial and lateral forebrain bundles), in the neuropil of the nucleus amygdalae, in the commissura anterior and commissura hippocampi, in the fibre regions of the diencephalon (including the optic chiasma), in the fibre regions of the tectum opticum and the tegmentum of the mesencephalon and in the white substance of the ventral half of the medulla oblongata. A greater MAO activity was found in the neuropil of the entire nucleus praeopticus. In the partes anterior and magnocellularis of this nucleus, MAO positive fibres are present in close contact with the perikarya, indicating a monoaminergic innervation of these neurons. The perikarya themselves did not show MAO activity. In the neurons of the nucleus praeopticus epichiasmaticus, the paraventricular organ (PVO) and nucleus infundibularis dorsalis (NID), only a slight MAO activity has been demonstrated in the perikarya, whereas a strong MAO positivity was found in the intraventricular protrusions and the neuropil. These data indicate the aminergic character of the neurons of these nuclei. From the postoptic fibre region a MAO positive tract was observed towards the developing median eminence and pars intermedia of the hypophysis. The pars nervosa and some cells of the pars distalis also contained MAO. Along the border of the aquaeduct of Silvius and the fourth ventricle, MAO positive liquor-containing neurons are also present. The distribution of acetylcholinesterase (AChE) was investigated in the hypothalamohypophysial region. AChE activity was found in the neuropil of the nucleus praeopticus magnocellularis, in the fibres of the optic chiasma and in the postoptic fibre region. The neurons of the PVO and NID were AChE negative. An AChE positive tract could be traced from the postoptic fibre region to the developing median eminence and pars nervosa. The pars distalis did not show AChE activity. However, in tadpoles reaching the metamorphic climax, ChE activity appeared in certain cells of the pars distalis; this might be related to degenerative phenomena in the acidophilic cells. The absence of AChE activity in the pars intermedia indicates a regulation of MSH release by peptidergic nerves to be unlikely.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Intestine ; Teleost ; Epithelium ; Renewal ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The intestinal absorptive epithelium of starved and fed fish has been studied electron microscopically. After feeding, cells of the proximal segment of the intestine show morphological characteristics of lipid absorption. Absorptive cells in the middle segment contain many pinocytotic vesicles in both fasted and fed specimens. Absorption of protein macromolecules is supposed to be one of the main functions of this part of the gut. In the most caudal part of the intestine, absorptive cells carry relatively few and short microvilli. The proximal and distal segments show structural indications of a function in osmoregulation. The renewal of the epithelium has been studied with light microscopic autoradiography, using tritiated thymidine. The intestinal mucosal fold epithelium represents a cell renewal system. The cells proliferate at the base of the fold and migrate towards the apex in 10–15 days at 20° C. The functional absorptive cells proved to be generally present in the intestinal epithelium, including the proliferative area. Undifferentiated cells have not been identified. The results will be compared with data on absorption of lipid and protein macromolecules in teleostean and mammalian intestines and with descriptions of the cell renewal system in the mammalian intestine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...