Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nitrification  (4)
  • Acetylene  (2)
  • 1
    ISSN: 1432-0789
    Keywords: Nitrification ; Denitrification ; Nitrification inhibitors ; 15N balance ; Nitrous oxide ; Greenhouse gases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effectiveness of wax-coated calcium carbide (as a slow-release source of acetylene) and nitrapyrin in inhibiting nitrification and emission of the greenhouse gases N2O and CH4 was evaluated in a microplot study with dry-seeded flooded rice grown on a grey clay near Griffith, NSW, Australia. The treatments consisted of factorial combinations of N levels with nitrification inhibitors (control, wax-coated calcium carbide, and nitrapyrin). The rate of nitrification was slowed considerably by the addition of wax-coated calcium carbide, but it was inhibited only slightly by the addition of nitrapyrin. As a result, the emission of N2O was markedly reduced by the application of wax-coated calcium carbide, whereas there was no significant difference in rates of N2O emission between the control and nitrapyrin treatments. Both nitrification inhibitors significantly reduced CH4 emission, but the lowest emission rates were observed in the wax-coated calcium carbide treatment. At the end of the experiment 84% of the applied N was recovered from the wax-coated calcium carbide treatment compared with ∼ 43% for the nitrapyrin and control treatments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Nitrogen immobilization ; Mineralization ; Nitrification ; Nitrification inhibitor ; Acetylene ; CaC2 ; 15N enrichment ; Urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of acetylene (provided by wax-coated calcium carbide, CaC2) on N transformations in a red-brown earth was measured in a field experiment with irrigated wheat by determining the change in the concentration and 15N enrichment of the organic N and mineral N pools with time. The study was conducted in the Goulburn-Murray Irrigation region of south-eastern Australia using 0.3 m by 0.3 m microplots fertilized with 15N-labelled urea (10 g N m-2; 5 atom% 15N). Acetylene was effective in slowing the nitrification of both unlabelled and labelled N. Nitrate derived from the added fertilizer reached a maximum 19 days after sowing in the treatment without CaC2, whereas little nitrate accumulated in the 8 g CaC2 m-2 treatment. There was significant immobilization of the urea N by 19 days after sowing in all treatments, but the extent of immobilization was not affected by the acetylene. The addition of acetylene slowed net mineralization of labelled and unlabelled N from the organic N pool, and resulted in increased accumulation of both unlabelled and labelled N in wheat tops.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 42-48 
    ISSN: 1432-0789
    Keywords: N2O ; Coated Calcium Carbide ; Acetylene ; Nitrification ; Denitrification ; Soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Coated CaC2 is a newly developed product which can supply nitrification-inhibiting quantities of C2H2 (1–10 Pa) to the soil, throughout a cropping season. This method of applying C2H2 to the soil maintains C2H2 in the soil continuously for several months. It is not know whether these low C2H2 concentrations alter soil microbial processes. A field study was initiated to determine the effect of supplying C2H2 to a clay soil, using coated CaC2, on soil respiration, denitrification, nitrification, and C2H2 consumption. The C2H2 consumption rate increased with length of soil exposure to C2H2 (r 2=0.59). The rates of CO2 production (r 2=0.88) and denitrification (r 2=0.86) were both highly correlated with the C2H2 consumption rates. The nitrifier potential decreased to a minimum of 21% of the control after 3 months of C2H2 treatment. After this time, nitrifier activity increased to 41% of the control after 11 months of treatment. This increase was due to increased C2H2 consumption in the soil. After 3 months of continuous application of C2H2 to the soil, the C2H2 concentrations were generally below that necessary to inhibit nitrification. No adaptation to the C2H2 by nitrifiers was found. Repeating these measurements 1 year later showed that soils previously exposed to C2H2 retained their enhanced C2H2 oxidation capacity and the capacity to use C2H2 to increase denitrification. Nitrification potentials remained about 50% lower in soils exposed to C2H2 a year earlier compared to soils not previously exposed to C2H2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1998), S. 44-50 
    ISSN: 1432-0789
    Keywords: Key words Nitrous oxide ; Methane consumption ; Nitrification ; Oxides of nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Land use changes in semiarid grasslands have long-lasting effects. Reversion to near-original conditions with respect to plant populations and productivity requires more than 50 years following plowing. The impact of more subtle management changes like small, annual applications of N fertilizer or changing cattle stocking rates, which alters N redistribution caused by grazing and cattle urine deposition, is not known. To investigate the long-term effects of N addition to the Colorado shortgrass steppe we made weekly, year-round measurements of N2O and CH4 from the spring of 1990 through June 1996. Fluxes of NOx (NO plus NO2) were measured from October 1995 through June 1996. These measurements illustrated that large N applications, either in a single dose (45 g N m–2), simulating cattle urine deposition, or in small annual applications over a 15-year period (30 g N m–2) continued to stimulate N2O emissions from both sandy loam and clay loam soils 6–15 years after N application. In sandy loam soils last fertilized 6 years earlier, average NOx emissions were 60% greater than those from a comparable, unfertilized site. The long-term impact of these N additions on CH4 uptake was soil-dependent, with CH4 uptake decreased by N addition only in the coarser textured soils. The short-term impact of small N additions (0.5–2 g N m–2) on N2O, NOx emissions and CH4 uptake was observed in field studies made during the summer of 1996. There was little short-term effect of N addition on CH4 uptake in either sandy loam or clay loam soils. Small N additions did not result in an immediate increase in N2O emissions from the sandy loam soil, but did significantly increase N2O flux from the clay loam soil. The reverse soil type, N addition interaction occurred for NOx emissions where N addition increased NOx emissions in the coarser textured soil 10–20 times those of N2O.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...