Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Epithelial cells  (3)
  • Acute disseminated encephalomyelitis  (1)
  • 1
    ISSN: 1432-1920
    Keywords: Acute disseminated encephalomyelitis ; Transplantation ; Magnetic resonance imaging ; FK-506 ; Rabbit antithymocyte globulin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Acute disseminated encephalomyelitis (ADEM) is a white matter inflammatory disease which usually follows a viral infection or pharmaceutical intervention. We describe a case of presumed ADEM in a heart/lung transplant patient, the etiology of which cannot be elucidated. The fascinating aspect is the mode of clinical presentation and the rapid resolution of radiologic abnormalities. Histologic examination of the brain is provided in an attempt to elucidate the radiographic abnormalities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Thymus ; Epithelial cells ; Hassall's ; Man
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary To evaluate interrelationships among epithelial cells, and between morphology and function in the microenvironment, we studied the ultrastructural morphology of epithelial cells in sections of human thymus from donors aged 2 months to 31 years. Six types of epithelial cells were observed: “subcapsular-perivascular” (type 1); “pale” (type 2); “intermediate” (type 3); “dark” (type 4); “undifferentiated” (type 5); and “large-medullary” (type 6). Cells of types 2, 3 and 4 were found throughout the organ. The type-2 to -4 epithelial cells may represent various stages in a differentiation process. In this, type-2 cells are very active and type-4 cells are possibly degenerating elements. Type-4 cells can also contribute to Hassall's corpuscles. Type-5 cells were located mainly in the cortico-medullary region and showed the morphological characteristics of undifferentiated elements. Type-6 cells were located exclusively in the medulla and displayed characteristics of cellular activity. Small Hassall's corpuscles consisted of type-6 epithelial cells; in larger corpuscles many nuclei of type-6 cells were found. Cells of types 2 and 6 contained tubular structures (diameter approximately 20 nm). Concerning the function of thymus epithelial cells, the features associated with protein synthesis observed in cellular types 2 and 6 make them likely candidates for humoral factor-producing and/or secreting elements. In addition, type-2 and -3 cells in the cortex appear to contribute to a special pattern of epithelium-lymphocyte interaction (“thymic nurse cells”), as demonstrated by the intracytoplasmic location of lymphocytes in the epithelial cells. The various steps in intrathymic T-cell maturation occur at locations in a microenvironment composed of morphologically distinct epithelial cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Thymus ; Cultured thymic fragments ; Epithelial cells ; Microenvironment ; Ultrastructure ; Rat (nude)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Cultured thymic fragments correspond to the thymic microenvironment depleted of lymphocytes and dendritic cells. When these fragments are implanted under the kidney capsule of congenitally athymic rats, lymphocytes and dendritic cells of host origin enter the graft and induce thymus-dependent immunity in the recipient. This paper describes the ultrastructure of the fragments and the changes that occur during the restoration of normal thymic architecture. At the end of the culture period of 6–9 days and in the early stages after implantation, the grafts consist of keratin-containing epithelial cells of unusual morphology that can be labelled with antibodies raised against the epithelium of the mid/deep cortex and the subcapsule/medulla. Normal thymic architecture develops, including nerves and blood vessels, as lymphocytes populate the environment, and by 4–6 weeks the epithelial cells are the same phenotypically and ultrastructurally as those found in normal rat thymus. However, some areas without lymphocytes still contain the atypical epithelial cells seen before implantation. Large multinucleated giant cells are also present with a few associated epithelial cells of subcapsular/medullary phenotype. In conclusion, the cultured thymic fragments contain a hitherto unknown precursor epithelial cell with an atypical ultrastructure and phenotype that is not seen in normal development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 275 (1994), S. 309-318 
    ISSN: 1432-0878
    Keywords: Thymus ; Pregnancy ; Involution ; Epithelial cells ; Immunocytochemistry ; Mouse (Swiss)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Changes in the murine thymus during pregnancy were studied using immunocytochemistry with monoclonal antibodies against thymic epithelial, neuroendocrine, and thymulin-producing cells, fibroblasts, blood vessels and connective tissue components. Extensive alterations occur in mid-pregnancy. The medulla was greatly enlarged in the involuted thymus, and there were greater numbers of epithelial cells. These epithelial cells had an altered distribution forming large structures surrounding spherical masses of mononulear cells, lacked epithelial cells and often contained a central blood vessel with fibroblasts and connective tissue. We have called these structures ‘medullary epithelial rings’ (MERs). To our knowledge these structures have not been described before. Late in pregnancy the loss of the central mononuclear cells leaves collapsed structures in a smaller medulla that nevertheless retains many epithelial cells. In virgins and early-pregnancy, there are cortical channels free of epithelial cells that are very infrequent later in pregnancy. This may reflect the loss of steroid-sensitive thymocytes from the cortex. The influence of sex-steroids neurological impulses and immune activity in causing the changes are discussed, as are the possible consequences in pregnancy of a reduced, thymocyte-depleted cortex and an enlarged medulla that shows great complexity and activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...