Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism 713 (1982), S. 39-45 
    ISSN: 0005-2760
    Keywords: (Rat heart) ; Acylcarnitine ; Carnitine ; Intralipid ; Lipid metabolism
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Azorhizobium caulinodans ORS571 ; Hydrogenase ; Nitrogen fixation ; Chemostat cultures ; H2/N2 ratio ; ATP/2e value
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Hydrogenase-negative (Hup-) mutants of Azorhizobium caulinodans ORS571 were isolated by means of Tn5 mutagenesis. The colony test used for screening for Hup- strains was based on the absence of reduction of triphenyltetrazolium chloride with hydrogen. Suspensions from cultures of the mutant strains grown under derepressing conditions did not use hydrogen with methylene blue or oxygen as the hydrogen acceptor. The mutants were shown to carry single Tn5 insertions at different locations in the A. caulinodans genome. Molar growth yields (corrected for poly-β-hydroxybutyrate formation) in chemostat cultures of the mutants were similar to those of the wild type. Molar growth yields of the mutants were not increased by passing additional hydrogen through chemostat cultures, which is in agreement with the hydrogenase-negative phenotype of the mutants. H2/N2 ratios (mol H2 formed per mol N2 fixed) were calculated from the hydrogen content of the effluent gas and the N-content of the bacterial dry weight. Low H2/N2 ratios (between 1.2 and 1.9) were found in both energy-limited (oxygen or succinate) cultures and in cultures limited by the supply of an anabolic substrate (Mg2+). ATP/2e values (mol ATP used at the transport of 2e to nitrogen or H+) were calculated from the H2/N2 ratios and the molar growth yields of nitrogen-fixing and ammonia-assimilating cultures. ATP/2e values were between 7 and 11. It was concluded that the calculated ATP/2e values comprise not only 4 mol ATP used at the transport of 2e through nitrogenase but also energy equivalents needed for reversed electron flow from NADH to the low-potential hydrogen donor used by nitrogenase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Basic research in cardiology 79 (1984), S. 268-273 
    ISSN: 1435-1803
    Keywords: rat heart ; lipolysis ; lysosomes ; interstitium ; glycerol release ; myocardium ; lipoprotein lipase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Mobilization of triacylglycerol stored in heart cells is accomplished by the combined action of lysosomal (acid) lipase and microsomal monoacylglycerol lipase or carboxylesterase. Non(heparin)-releasable neutral or alkaline lipase is similar to non(readily)-releasable lipoprotein lipase (LPL). The enzyme is mainly localized extracellularly. Non(readily)-releasable LPL probably represents LPL in caveola or vacuolae of vascular endothelium and/or LPL on myocardial interstitium. It contributes to the uptake of lipoprotein constituents in heart cells. Glycerol, an endproduct of lipolysis, is not a reliable marker for the net mobilization of lipid stored in heart cells. It is formed both intra- and extracellularly, and does not reflect the rate of oxidation of part of free fatty acids formed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1435-1803
    Keywords: lipolysis ; lysosomes ; rat heart ; ischemia ; reperfusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The hormonal regulation and enzymatic basis of endogenous lipolysis in heart are not yet completely elucidated. The lysosomal fraction from rat heart appeared to be markedly enriched in triglycerides and a significant reduction in triglycerides in this fraction was found after prolonged perfusion or stimulation of lipolysis with glucagon. The enhanced rate of lipolysis, measured as glycerol release from the isolated perfused rat heart, was abolished 10–15 min after continuous glucagon administration. Omission of glucagon for another 60 min restored the ability of glucagon to stimulate lipolysis, indicating the limited availability of endogenous triglycerides and the presence of a transfer-system for triglycerides from a non-metabolically active pool to a metabolically active pool. The enhanced lipolysis induced by low-flow ischemia was found to be inhibited by the lysosomotropic agent methylamine (5 mM). Methylamine-perfusion during low-flow ischemia was accompanied by an increased recovery of myocardial triglycerides in the lysosomal fraction. The possible role of lysosome-like particles in myocardial triglyceride homeostasis was further investigated by studying the kinetics of uptake and degradation of labeled triglycerides by membrane-particles recovered in the subcellular fraction enriched with lysosomal marker enzymes. It appeared that isolated lysosomal membranes take up added triglycerides at an average rate of 30 nmoles/min/g protein. The bulk of these triglycerides taken up is stored whereas 20% is degraded to diglycerides and free fatty acids. More than 90% of the free fatty acids formed were released from the lysosomes into the supernatant. The uptake and degradation of triglyceride-filled liposomes by isolated myocardial lysosomes was inhibited during incubation with methylamine (5 mM). On the other hand, a lowering of pH during in vitro incubation increased the rate of uptake and degradation of added triglycerides by isolated lysosomes. These results indicate that lysosomes or lysosome-like particles are involved in the enhanced lipolysis during myocardial ischemia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...