Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Adrenergic nerves  (1)
  • Auto-/paracrine  (1)
  • Germ cell  (1)
  • 1
    ISSN: 0014-5793
    Keywords: Basic fibroblast growth factor ; Germ cell ; Mouse ; Testis ; mRNA
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 195 (1997), S. 103-111 
    ISSN: 1432-0568
    Keywords: Key words Chromaffin cell ; PC12 cells ; Neurotrophic factor ; Sympathoadrenal differentiation ; Retrograde transport ; FGF receptor ; Auto-/paracrine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Chromaffin cells of the adrenal medulla and their tumor counterparts, the pheochromocytoma (PC12) cells, are well-established model systems in neurobiology. The development of sympathoadrenal progenitor cells to chromaffin cells can be studied with regard to developmental signals which trigger the differentiation. With regard to potential treatments of neurological disorders like Parkinson’s disease chromaffin cell grafting can be used as one therapeutical approach. The beneficial effect of chromaffin cell grafts is possibly not only related to the release of dopamine but may also be linked to the release of growth factors. One of the growth factors that is synthesized by chromaffin and PC12 cells is basic fibroblast growth factor (FGF-2). The experimental data available so far, are in agreement with different functional roles of FGF-2. This article summarizes the putative physiological functions of FGF-2 in the adrenal medulla. Three differential functional roles of FGF-2 are discussed: (1) as a differentiation factor for sympathoadrenal progenitor cells; (2) as a target-derived neurotrophic factor for preganglionic sympathetic neurons which innervate adrenal medullary cells; (3) as an auto-/paracrine factor in the adrenal medulla.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Adrenergic nerves ; Steroidogenic cells ; Embryonic ovary ; β 2Adrenoceptors ; Cytochemistry ; Ultrastructure ; Chicken
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The present study investigates the innervation of the embryonic chick ovary with regard to (i) development and compartmentalization of catecholaminergic nerves, and (ii) presence of adrenoceptors on steroidogenic target cells of catecholaminergic nerve terminals. Catecholaminergic nerve fibers visualized by glyoxylic acid-induced histofluorescence first appeared at embryonic day (E) 13. From E15 through E21 the density of fluorescent aminergic nerves increased markedly in parallel with the concentration of catecholamines and numbers of nerve bundles and single axons seen at the electron-microscopic level. Catecholaminergic nerves were confined to the ovarian medulla and closely associated with interstitial cells. Nerve terminals approached interstitial cells up to a distance of 20 nm and, in their majority, exhibited uptake of the false adrenergic transmitter 5-hydroxydopamine. Although adrenaline amounted to 14% of the total catecholamine content at E21, adrenaline immunoreactivity was only detected in adrenal chromaffin cells, but not in nerve fibers or cell bodies within the ovary. Interstitial cells structurally matured between E15 and E21 as documented by an increase of smooth endoplasmic reticulum and tubular mitochondria. Monoclonal antibodies mAB 120 and BRK 2 raised against avian β 1 and mammalian β 2-adrenergic receptors revealed the presence of β 2-adrenoceptor-like immunoreactivity on the surface of interstitial cells, but not on any other cell type. The results are consistent with the notion of a dense adrenergic innervation of the embryonic chick ovarian medulla and its steroidogenic interstitial cells, and suggest the chick ovary as an excellent model for elucidating the functional role of a neural input to steroidogenic cells during development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...