Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • inertial confinement fusion  (2)
  • Anabaena flos-aquae  (1)
  • 1
    ISSN: 1572-8773
    Keywords: Anabaena flos-aquae ; chlorophyll a ; fluorescence emission ; heavy metals ; Hill activity ; photosystem II ; phycobilisomes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The effect of equimolar concentrations of Hg2+ and Cd2+ on the whole cell absorption spectra, absorption spectra of the extracted phycocyanin (PC) and fluorescence emission spectra of phycobilisomes (PBS) was investigated in the cells of Anabaena flos-aquae. The PC component of the PBS was found to be extremely sensitive to the Hg2+ rather than the Cd2+ ions. Further, the results showed that Hg2+ and Cd2+ induced decrease in the rate of Hill activity (H2O - DCPIP) was partially restored by the electron donor NH2OH, not by the diphenyl carbazide. Similarly, chlorophyll a fluorescence emission in the presence of metals showed that addition of NH2OH could effectively reverse the metal induced alterations in the fluorescence emission intensity. These results, together, suggested that Hg2+ and Cd2+ caused damage to the photosystems (PS) II reaction center. However, a relatively higher stimulation of the chlorophyll a emission at 695 nm with a red shift of 4.0 nm in the presence of Hg2+, and Cd2+ induced preferential decrease in the emission intensity at 676 nm as compared with the peak at 695 nm were indicative of the differential action of Hg2+ and Cd2+ on the PS II.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9591
    Keywords: Spherical pinch ; inertial confinement fusion ; shock wave compression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract In the spherical pinch scheme, the hot D-T plasma produced in the center of the high pressure spherical vessel is confined by means of imploding shock waves launched from the periphery of the vessel for a time sufficiently long to achieve break-even conditions for plasma fusion. Theoretical studies on spherical pinch made so far have been limited up to the conditions of substantial expansion of the central plasma and the well-defined time delay between the creation of central plasma and the launching of the peripheral shock which led to the conclusion that, in realistic situations of SP experiments, negative time delays should be adopted, i.e., the launching of the imploding shock wave should precede the formation of the central plasma. However, the interaction of converging shock wave with the central plasma causing an additional heating and compression of the central plasma favoring plasma fusion conditions was not taken into account. Starting from the hydrodynamic equations of the system, the proposed simulation code deals with the propagation of converging shock waves and its interaction with the expanding central plasma. Considering the above-mentioned interaction in a self-consistent manner, the temporal evolution of temperature of central plasma is studied. Some results of the numerical simulation on the dynamics of shock wave propagation are also compared with the predictions of “point strong explosing theory.”
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9591
    Keywords: Spherical pinch ; inertial confinement fusion ; shock wave propagation ; radiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract In the spherical pinch scheme, the temperature of central D-T plasma must reach the value,T=2.58 kev and the density of central D-T plasma is also not very high. The radiation energy and pressure cannot be neglected. Taking into account the influence of the radiation, the present study reveals the new scaling laws under the conditions of high temperature radiation hydrodynamics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...