Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Brassica napus ; Cruciferin ; Antisense ; Seed storage protein ; Amino-acid composition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The levels of certain essential amino acids, in particular cysteine, lysine and methionine, in the seed storage protein of a commercial spring variety of rape, Brassica napus, have been increased by the introduction of an antisense gene for cruciferin, which is the most abundant storage protein in rapeseed. The antisense construct contained part of the cruA gene in an inverted orientation, and the gene was driven by the 5′ flanking region of the gene for napin such that antisense RNA was expressed in a seed-specific manner. The construct was introduced by Agrobacterium-mediated gene transfer. In self-pollinated seeds (T1 seeds) of transgenic plants there was a reduction in the levels of the α1β1 and α2/3β2/3 subunits of cruciferin, whereas the level of the α4β4 subunit was unchanged. The total protein and lipid contents of transgenic seeds did not differ significantly from that of normal seeds. Seeds with reduced amounts of cruciferin accumulated higher amounts of napin than non-transformed seeds, but the level of oleosin was unaffected. Amino-acid analysis of the seed storage protein revealed that T1 seeds with reduced amounts of cruciferin contained higher relative levels of three essential amino acids, namely, lysine, methionine and cysteine, with increases of 10%, 8% and 32% over the respective levels in non-transgenic seeds (B. napus cv Westar).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Daucus ; Protoplast fusion ; Cybrids ; Mitochondrial DNA recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Protoplasts of Daucus capillifolius isolated from a suspension culture (chromosome number above 60) were X-irradiated over lethal dose (60 krad) just prior to fusion. Protoplasts from D. carota cell line (chromosome number 17) were treated with 15 mM iodoacetamide and fused with the X-irradiated protoplasts. Putative cybrid plants were regenerated on Murashige and Skoog medium (MS) lacking 2,4-D. The regenerated plants possessed chromosome numbers of 17 (2n−1) or 34 (4n−2) and an identical leaf morphology to D. carota. Their mitochondrial DNAs (mtDNAs) were analysed with restriction endonucleases. Novel restriction fragments, not present in mtDNA digests from both parents, were observed in mtDNAs of regenerated plants. These results indicate successful formation of cybrids between D. capillifolius and D. carota by protoplast fusion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 77 (1989), S. 39-43 
    ISSN: 1432-2242
    Keywords: Daucus ; Carrot ; Mitochondrial DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Restriction fragment patterns of mitochondrial DNAs (mtDNAs) from 13 carrot cultivars (Daucus carota ssp. sativus), wild carrot (ssp. carota), ssp. gummifer, and D. capillifolius were compared with each other using four restriction endonucleases. The mtDNAs of the 13 carrot cultivars could be classified into three distinct types — I, II and III — and were also clearly distinguishable from the mtDNAs of wild carrot (type IV), gummifer (V) and D. capillifolius (VI). The proportions of common restriction fragments (F values) shared by two of the three mtDNA types (I, II and III) of carrot cultivars were approximately 0.5–0.6. The F values were 0.4–0.5 for mitochondrial genomes between wild carrot, ssp. gummifer and D. capillifolius. The mitochondrial genomes between wild carrot and the carrot cultivars showed closer homologies those between wild carrot, ssp. gummifer, and D. capillifolius. The diversity of the mitochondrial genomes among the carrot cultivars is too high to presume that it was generated from the cytoplasm of only one common ancestor during the relatively short history of carrot breeding. These results suggested that the three types of cytoplasms found in the carrot cultivars might have existed in a prototype of D. carota in pre-historical times.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...