Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 87 (1993), S. 243-249 
    ISSN: 1432-2242
    Keywords: Molecular markers ; Polygenic ; Quantitative trait loci (QTL)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have used restriction fragment length polymorphisms (RFLPs) to map genes in mungbean (Vigna radiata) that confer partial resistance to the powdery mildew fungus, Erysiphe polygoni. DNA genotypes for 145 RFLP loci spanning 1570 centimorgans of the mungbean genome were assayed in a population of 58 F2 plants. This population was derived from a cross between a moderately powdery mildew resistant (“VC3980A”) and a susceptible (“TC1966”) mungbean parent. F3 lines derived from the F2 plants were assayed in the field for powdery mildew response and the results were compared to the RFLP genotype data, thereby identifying loci associated with powdery mildew response. A total of three genomic regions were found to have an effect on powdery mildew response, together explaining 58% of the total variation. At 65 days after planting, two genomic regions were significantly associated with powdery mildew resistance. For both loci, the allele from “VC3890A” was associated with increased resistance. At 85 days, a third genomic region was also associated with powdery mildew response. For this locus, the allele from the susceptible parent (“TC1966”) was the one associated with higher levels of powdery mildew resistance. These results indicate that putative partial resistance loci for powdery mildew in mungbean can be identified with DNA markers, even in a population of modest size analyzed at a single location in a single year.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words Quantitative trait locus ; QTL ; Disease resistance ; Polygenic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A major partial-resistance locus to the soybean cyst nematode (Heterodera glycines Ichinohe; SCN) was identified on linkage group `G' of soybean [Glycine max (L.) Merr.] using restriction fragment length polymorphisms (RFLPs). This locus explained 51.4% (LOD=10.35) of the total phenotypic variation in disease response in soybean Plant Introduction (PI) 209332, 52.7% (LOD=15.58) in PI 90763, 40.0% (LOD=10.50) in PI 88788, and 28.1% (LOD=6.94) in `Peking'. Initially, the region around this major resistance locus was poorly populated with DNA markers. To increase marker density in this genomic region, first random, and later targeted, comparative mapping with RFLPs from mungbean [Vigna radiata (L.) R. Wilcz.] and common bean (Phaseolus vulgaris L.) was performed, eventually leading to one RFLP marker every 2.6 centimorgans (cM). Even with this marker density, the inability to resolve SCN disease response into discrete Mendelian categories posed a major limitation to mapping. Thus, qualitative scoring of SCN disease response was carried out in an F5:6 recombinant inbred population derived from `Evans'×PI 209332 using a 30% disease index cut-off for resistance. Using the computer program JoinMap, an integrated map of the region of interest was created, placing the SCN resistance locus 4.6 cM from RFLP marker B53 and 2.8 cM from Bng30. This study demonstrates how a combination of molecular-mapping strategies, including comparative genome analysis, join mapping, and qualitative scoring of a quantitative trait, potentially provide the necessary tools for high-resolution mapping around a quantitative-trait locus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Key words Bacterial artificial chromosome ; Simple sequence repeats ; Microsatellites ; Soybean cyst nematode ; Genetic mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Simple sequence repeats (SSRs) are versatile DNA markers that are readily assayed and highly informative. Unfortunately, non-targeted approaches to SSR development often leave large genomic regions without SSR markers. In some cases these same genomic regions are already populated by other types of DNA markers, especially restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNAs (RAPDs), and amplified fragment length polymorphisms (AFLPs). To identify SSR markers in such regions, bacterial artificial chromosome (BAC) clones can be used as intermediaries. First, one or more BAC clones in a region of interest are identified through the use of an existing DNA marker. BAC clones uncovered in this initial step are then used to create a small insert DNA library that can be screened for the presence of SSR-containing clones. Because BAC inserts are often 100-kb pairs or more in size, most contain one or more SSRs. This strategy was applied to two regions of the soybean genome near genes that condition resistance to the soybean cyst nematode on molecular linkage groups G and A2. This targeted approach to identifying new DNA markers can readily be extended to other types of DNA markers, including single nucleotide polymorphisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2242
    Keywords: Quantitative trait locus ; QTL ; Disease resistance ; Polygenic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A major partial-resistance locus to the soybean cyst nematode (Heterodera glycines Ichinohe; SCN) was identified on linkage group ‘G’ of soybean [Glycine max (L.) Merr.] using restriction fragment length polymorphisms (RFLPs). This locus explained 51.4% (LOD=10.35) of the total phenotypic variation in disease response in soybean Plant Introduction (PI) 209332, 52.7% (LOD=15.58) in PI 90763, 40.0% (LOD=10.50) in PI 88788, and 28.1% (LOD=6.94) in ‘Peking’. Initially, the region around this major resistance locus was poorly populated with DNA markers. To increase marker density in this genomic region, first random, and later targeted, comparative mapping with RFLPs from mungbean [Vigna radiata (L.) R. Wilcz.] and common bean (Phaseolus vulgaris L.) was performed, eventually leading to one RFLP marker every 2.6 centimorgans (cM). Even with this marker density, the inability to resolve SCN disease response into discrete Mendelian categories posed a major limitation to mapping. Thus, qualitative scoring of SCN disease response was carried out in an F5∶6 recombinant inbred population derived from ‘Evans’xPI 209332 using a 30% disease index cut-off for resistance. Using the computer program JoinMap, an integrated map of the region of interest was created, placing the SCN resistance locus 4.6 cM from RFLP marker B53 and 2.8 cM from Bng30. This study demonstrates how a combination of molecularmapping strategies, including comparative genome analysis, join mapping, and qualitative scoring of a quantitative trait, potentially provide the necessary tools for high-resolution mapping around a quantitative-trait locus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Key words Simple sequence repeats ; Microsatellites ; Soybean cyst nematode ; Genetic mapping ; Marker-assisted selection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The soybean cyst nematode (SCN) (Heterodera glycines Inchinoe) is the most economically significant soybean pest. The principal strategy to reduce or eliminate damage from this pest is the use of resistant cultivars. Identifying resistant segregants in a breeding program is a difficult and expensive process which is complicated by the oligogenic nature of the resistance and genetic variability in the pathogen. Fortunately, resistance at one SCN-resistance locus, rhg1, is generally accepted as a necessity for the development of resistant genotypes using any source of resistance and when challenged by any SCN race. Thus, the development of SCN resistant cultivars would be expedited if an effective and rapid system were available to identify breeding lines carrying a resistance allele at the rhg1 locus. In this study we report two simple sequence repeat (SSR) or microsatellite loci that cosegregate and map 0.4 cM from rhg1. Allelic variation at the first of these loci, BARC-Satt309, distinguished most, if not all, SCN-susceptible genotypes from those carrying resistance at rhg1 derived from the important SCN-resistance sources ’Peking’, PI 437654, and PI 90763. BARC-Satt309 was also effective in distinguishing SCN resistance sources PI 88788 and PI 209332 from many, but not all, susceptible genotypes. BARC-Satt309 cannot be used in marker-assisted selection in populations developed from typical southern US cultivars crossed with the important resistance sources PI 88788 or PI 209332 because these genotypes all carry the identical allele at the BARC-Satt309 locus. A second SSR locus, BARC-Sat_168, was developed from a bacterial artificial chromosome (BAC) clone that was identified using the primers to BARC-Satt309. BARC-Sat_168 distinguished PI 88788 and PI 209332 from southern US cultivars such as ’Lee’, ’Bragg’ and ’Essex’. Both BARC-Satt309 and BARC-Sat_168 were used to assay lines from SCN-susceptible×SCN-resistant crosses and proved to be highly effective in identifying lines carrying rhg1 resistance from those carrying the allele for SCN susceptibility at the rhg1 locus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 91 (1996), S. 181-187 
    ISSN: 1573-5060
    Keywords: Aphis craccivora ; cowpea ; DNA markers ; insect ; legume ; restriction fragment length polymorphisms ; Vigna unguiculata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Restriction fragment length polymorphism (RFLP) analysis has several advantages over traditional methods of genetic linkage mapping, one of these being the starting point for map-based cloning. The recent development of an RFLP map of cowpea (Vigna unguiculata L. Walp) has allowed the investigation of associations between genes of interest and RFLP markers. A cross between an aphid (Aphis craccivora Koch) resistant cultivated cowpea, TT84S-2246-4, and an aphid susceptible wild cowpea, NI 963, was screened for both aphid phenotype and RFLP marker segregation. One RFLP marker, bg4D9b, was found to be tightly linked to the aphid resistance gene (Rac 1) and several flanking markers in the same linkage group (linkage group 1) were also identified. The close association of Rac 1 and RFLP bg4D9b presents a real potential for cloning this insect resistance gene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...