Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 42 (1981), S. 158-170 
    ISSN: 1432-1106
    Keywords: Spinal cord ; Excitation ; Presynaptic ; Inhibition ; Baclofen ; Glutamergic ; Aspartergic ; Gabergic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary When ejected microelectrophoretically near spinal interneurones of cats anaesthetised with pentobarbitone and under conditions where postsynaptic excitability was maintained artificially at a constant level, (−), but not (+), -baclofen selectively reduced monosynaptic excitation by impulses in low threshold muscle (Ia and Ib) and cutaneous (Aα) afferents. Polysynaptic excitation of interneurones and Renshaw cells by impulses in higher threshold afferents was less affected, and baclofen had little or no effect on the cholinergic monosynaptic excitation of Renshaw cells. Glycinergic and gabergic inhibitions of spinal neurones were relatively insensitive to baclofen. These stereospecific actions of baclofen, produced by either a reduction in the release of excitatory transmitter or postsynaptic antagonism, suggest that Ia, Ib, and Aα afferents may release the same excitatory transmitter which differs from that of spinal excitatory interneurones. Microelectrophoretic (−), but not (+), -baclofen also reduced primary afferent depolarization of ventral horn Ia extensor afferent terminations produced by impulses in low threshold flexor afferents, without altering either the electrical excitability of the terminations or their depolarization by electrophoretic GABA or L-glutamate. This stereospecific action of baclofen is interpreted as a reduction in the release of GABA at depolarizing axo-axonic synapses on Ia terminals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Intestine, small ; Neurons, types ; Myenteric plexus ; Intracellular dye injection (Lucifer yellow) ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The shapes of myenteric neurons in the guineapig small intestine were determined after injecting living neurons with the dye Lucifer yellow via a microelectrode. The cells were fixed and the distribution of Lucifer yellow rendered permanent by an immunohistochemical method. Each of 204 nerve cells was examined in whole-mount preparations of the myenteric plexus and drawn using a camera lucida at 1250 x magnification. Four cell shapes were distinguished: (1) neurons with several long processes corresponding to type II of Dogiel; (2) neurons with a single long process and lamellar dendrites corresponding to type I of Dogiel; (3) neurons with numerous filamentous dendrites; and (4) small neurons with few processes. About 15% of the neurons could not be placed into these classes or into any single class. The type II neurons (39% of the sample) had generally smooth somata and up to 7 (average 3.3) long processes, most of which ran circumferentially. Dogiel type I neurons (34% of sampled neurons) had characteristic lamellar dendrites, i.e., broad dendrites that were flattened in the plane of the plexus. The filamentous neurons (7% of the sample), had, on average, 14 fine processes up to about 50 μm in length. Small neurons with smooth outlines and a few fine processes made up 5% of the neurons encountered. We conclude that myenteric neurons that have been injected with dye can be separated into morphologically distinct classes and that the different morphological classes probably correspond to different functional groupings of neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Myenteric plexus ; Enteric nervous system ; Intestine, small ; Ultrastructure ; Innervation, of intestinal muscle ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The tertiary component of the myenteric plexus consists of interlacing fine nerve fibre bundles that run between its principal ganglia and connecting nerve strands. It was revealed by zinc iodide-osmium impregnation and substance P immunohistochemistry at the light-microscope level. The plexus was situated against the inner face of the longitudinal muscle and was present along the length of the small intestine at a density that did not vary markedly from proximal to distal. Nerve bundles did not appear to be present in the longitudinal muscle as judged by light microscopy, although numberous fibre bundles were encountered within the circular muscle layer. At the ultrastructural level, nerve fibre bundles of the tertiary plexus were found in grooves formed by the innermost layer of longitudinal smooth muscle cells. In the distal parts of the small intestine, some of these nerve fibre bundles occasionally penetrated the longitudinal muscle coat. Vesiculated profiles in nerve fibre bundles of the tertiary plexus contained variable proportions of small clear and large granular vesicles; they often approached to within 50–200 nm of the longitudinal smooth muscle cells. Fibroblast-like cells lay between strands of the tertiary plexus and the circular muscle but were never intercalated between nerve fibre varicosities and the longitudinal muscle. These anatomical relationships are consistent with the tertiary plexus being the major site of neurotransmission to the longitudinal muscle of the guinea-pig small intestine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...