Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 128 (1981), S. 376-383 
    ISSN: 1432-072X
    Keywords: Bacteriochlorophyll a ; Associated polypeptides ; Rhodopseudomonas capsulata ; Membrane differentiation ; Photosynthetic apparatus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Early stages in the formation of membranes and photosynthetic units were studied under growth-limiting phototrophic and chemotrophic conditions in cells of Rhodopseudomonas capsulata. The incorporation of polypeptides, forming bacteriochlorophyll-carotinoid-protein complexes in the membrane, was followed by use of pulse-labeling and immunoprecipitation techniques. The newly synthesized polypeptides were inserted into two distinct membrane fractions at both different rates and proportions. The two membrane fractions differed in sedimentation behavior, absorption spectra and activities of the respiratory chain. The individual pigment-associated proteins did not exhibit precursor-product relationship between the two membrane fractions. The data suggest that newly synthesized polypeptides were integrated both into cytoplasmic and pre-existing intracytoplasmic membranes, where the proteins and pigments were assembled to form reaction centers and light-harvesting pigment-protein complexes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 156 (1991), S. 129-134 
    ISSN: 1432-072X
    Keywords: δ-Aminolevulinic acid synthase ; Bacteriochlorophyll ; Promoter activity ; Oxygen regulation ; Rhodobacter capsulatus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The promoter of the Rhodobacter capsulatus hemA gene, coding for the enzyme δ-aminolevulinic acid synthase (ALAS), was identified by trans-complementation of a δ-aminolevulinic acid (ALA)-dependent mutant and found to be located within a 170 bp region proximal to the hemA gene. The activity of the hemA promoter was demonstrated by lacZ fusion and in vitro transcription-translation. An open reading frame (ORFX) was found downstream of hemA. The activity of the hemA promoter, but not that of the ORFX promoter, increased when oxygen tension was lowered in the culture. Deletions upstream of the hemA promoter region did not affect ALAS activity and formation of pigment-protein complexes in R. capsulatus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: hemA ; δ-Aminolevulinic acid synthase ; Tetrapyrrole biosynthesis ; Phototrophic bacteria ; Rhodobacter capsulatus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The Rhodobacter capsulatus hemA gene, coding for the enzyme δ-aminolevulinic acid synthase (ALAS), was isolated from a genome bank by hybridization with a hemT probe from Rhodobacter sphaeroides. Subcloning of the initial 3.9 kb HindIII fragment allowed the isolation of a 2.5 kb HindIII-BglII fragment which was able to complement the δ-aminolevulinic acid-requiring (ALA-requiring) Escherichia coli mutant SHSP19. DNA sequencing revealed an open reading frame coding for a protein with 401 amino acids which displayed similarity to the amino acid sequences of other known ALASs. However, no resemblance was seen to the HemA protein of E. coli K12. Based on the sequence data, an ALA-requiring mutant strain of R. capsulatus was constructed by site-directed insertion mutagenesis. Introduction of a plasmid, containing the hemA gene of R. capsulatus on the 3.9 kb HindIII fragment, restored ALA-independent growth of the mutant indicating that there is only one gene for ALA biosynthesis in R. capsulatus. Transfer of the R′ factor pRPS404 and hybridization analysis revealed that the ALAS gene is not located within the major photosynthetic gene cluster.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...