Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Vasoactive intestinal peptide  (6)
  • Autonomic nervous system  (5)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 332 (1986), S. 79-88 
    ISSN: 1432-1912
    Keywords: Apamin ; Enteric inhibitory neurons ; Intestinal reflexes ; Vasoactive intestinal peptide ; Adenosine triphosphate ; Neurotransmitters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Eight smooth muscle preparations from the stomach, small intestine and large intestine of the guinea-pig were used to compare apamin's actions in reducing the effectiveness of transmission from enteric inhibitory nerves and in reducing responses to inhibitory agonists α,β-methylene ATP, VIP and isoprenaline. The effects of apamin on inhibitory reflexes in the ileum and colon were also evaluated. Apamin had little or no effect on responses to VIP and isoprenaline in any region, but consistently and substantially reduced responses to α,β-methylene ATP. Responses to stimulation of enteric inhibitory neurons were substantially reduced by apamin in the antrum circular muscle, ileum longitudinal and circular muscle, taenia coli and distal colon longitudinal muscle, but it was ineffective in the fundus circular muscle, proximal colon longitudinal muscle and distal colon circular muscle. It caused a small reduction of the relaxation of the ileal circular muscle caused reflexly by distension, but did not modify the similar descending inhibitory reflex in the circular muscle of the colon. It is concluded that apamin can be used to distinguish two types of non-noradrenergic transmission from enteric inhibitory nerves to gastrointestinal muscle. Furthermore, neither VIP nor ATP can be the sole transmitter chemical released from enteric inhibitory neurons throughout the gastrointestinal tract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0568
    Keywords: Autonomic nervous system ; Adrenergic nerves ; Chromaffin cells ; Pelvic viscera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The organs of the lower abdominal and pelvic regions of the guinea-pig receive nerves from the inferior mesenteric ganglia and pelvic plexuses. The inferior mesenteric ganglia connect with the sympathetic chains, the superior mesenteric ganglia, the pelvic plexuses via the hypogastric nerves, and with the gut. Each pelvic plexus consists of anterior and posterior parts which send filaments to the internal generative organs and to the rectum, internal anal sphincter and other pelvic organs. The pelvic nerves enter the posterior plexuses, which also receive rami from the sacral sympathetic chains. The adrenergic neurons of the pelvic plexuses are monopolar, do not have dendrites and are supplied by few varicose adrenergic axons. Nearly all the nerves contain adrenergic fibres. After exposure to formaldehyde vapour the chromaffin cells appear brightly fluorescent with one or two long, often varicose, processes. Most of the chromaffin cells are in Zuckerkandl's organ or in chromaffin bodies associated with the inferior mesenteric ganglia. Groups of chromaffin cells are found along the hypogastric nerves and in the pelvic plexuses; they become smaller and fewer as regions more posterior to Zuckerkandl's organ are approached.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 140 (1973), S. 109-128 
    ISSN: 1432-0568
    Keywords: Autonomic nervous system ; Gastrointestinal tract ; Adrenergic nerves ; Anal sphincter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The anatomy and the adrenergic innervation of the rectum, internal anal sphincter and of accessory structures are described for the guinea-pig. The distribution of adrenergic nerves was examined using the fluorescence histochemical technique applied to both sections and whole mount preparations. The longitudinal and circular muscle of the rectum and the muscularis mucosae are all supplied by adrenergic nerve terminals. The density of the adrenergic innervation of the muscularis externa increases towards the anal sphincter. There is a very dense innervation of the internal anal sphincter, of the anal accessory muscles and of the corrugator ani. Non-fluorescent neurons in the ganglia of the myenteric plexus are supplied by adrenergic terminals. The ganglia become smaller and sparser towards the internal anal sphincter and non-ganglionated nerve strands containing adrenergic axons run from the plexus to the sphincter muscle. Adrenergic fibers innervate two interconnected ganglionated plexuses in the submucosa. Very few adrenergic nerve cells were found in the myenteric plexus and they were not found at all in the submucosa. The extrinsic arteries and veins of the pelvic region are heavily innervated by adrenergic nerves. Within the gut wall the arteries are densely innervated but there is little or no innervation of the veins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0568
    Keywords: Autonomic nervous system ; Adrenergic nerves ; Pelvic viscera ; Gastrointestinal tract
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The adrenergic innervation of the pelvic viscera was examined by the fluorescence histochemical technique, applied to tissue from untreated guinea-pigs and from guinea-pigs in which nerve pathways had been interrupted at operation. It was found that adrenergic neurons in the inferior mesenteric ganglia give rise to axons which run in the colonic nerves and end in the myenteric and submucous plexuses and around the arteries of the distal colon. In the rectum, part of the innervation of the myenteric plexus and all of the innervation of the submucous plexus comes from the inferior mesenteric ganglia. The rest of the adrenergic innervation of the myenteric plexus comes from the posterior pelvic ganglia or the sacral sympathetic chains. The innervation of the blood vessels of the rectum is from the posterior pelvic ganglia. Adrenergic nerves run from the sacral sympathetic chains and pass via nerves accompanying the rectal arteries to the internal anal sphincter. Other adrenergic fibres to the internal anal sphincter either arise in, or pass through, the posterior pelvic plexuses. The anal accessory muscle is innervated by adrenergic axons arising in the posterior pelvic plexuses. Adrenergic nerves which run in the pudendal nerves, probably from the sacral sympathetic chains, innervate the erectile tissue of the penis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 307 (1979), S. 57-63 
    ISSN: 1432-1912
    Keywords: Substance P ; Intestine ; Autonomic nervous system ; Peptidergic nerves
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Acid extracts from both normal and extrinsically denervated ileum contained a compound which was indistinguishable from synthetic substance P; this compound was assayed by examining its contractile effect on the longitudinal muscle of segments of ileum in which receptors for acetylcholine and histamine were blocked. Contractions caused by the compound were markedly and selectively antagonized when the ileum was made insensitive to the action of substance P. The activities in the extract and of synthetic substance P were both destroyed by chymotrypsin but were not affected by trypsin or carboxypeptidase B. The concentrations of substance P-like material in normal and extrinsically denervated segments were not significantly different, being equivalent to 0.48 μg of substance P per g of external muscle plus myenteric plexus. A compound with substance P-like activity was liberated by stimulation of intramural nerves, either electrically or by dimethylphenylpiperazinium, in both normal and extrinsically denervated segments of ileum. The release of this compound was prevented by tetrodotoxin and its action on the muscle was blocked when the ileum was made insensitive to the action of substance P. Experiments with transmural stimulation showed that excitatory nerve pathways involving substance P neurons extend for less than 4 cm along the intestine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 328 (1985), S. 446-453 
    ISSN: 1432-1912
    Keywords: Substance P ; Enteric neurons ; Autonomic nervous system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The sites of action and possible roles of substance P in contracting the circular muscle of the guinea-pig ileum were studied using two analogues of substance P that act as antagonists of some of its actions. These ared-Arg1,d-Pro2,d-Trp7,9, Leu11-substance P andd-Pro2,d-Trp7,9-substance P, referred to by the single letter amino acid codes for the substituting amino acids as (RPWWL)-SP and (PWW)-SP, respectively. Records of circular muscle activity were taken from strips of intestine free of mucosa and submucosa and from rings with all layers of intestine intact. Substance P was equally effective in contracting the circular muscle strips as it was in contracting the longitudinal muscle. The contractions of strips were not blocked by hyoscine (2×10−6 M) or tetrodotoxin (6×10−7 M), but were substantially reduced by (RPWWL)-SP (6.7×10−6 M) or (PWW)-SP (2×10−5 M). In contrast, contractions of the circular muscle of whole rings of intestine elicited by low concentrations of substance P (4×10−7M) were blocked by hyoscine or tetrodotoxin but notreduced by the substance P antagonists in the concentrations referred to above. These observations indicate that the antagonists are effective at receptors for substance P on the muscle, but not at substance P receptors on enteric cholinergic nerves. Transmural stimulation of strips of circular muscle or of intestinal rings in the presence of hyoscine evoked contractions that were blocked by tetrodotoxin. These hyoscineresistant, nerve-mediated contractions could be elicited by single pulses in the strips. The contractions were reduced to less than 20% of original amplitude by (RPWWL)-SP (6.7×10−6M). Reflex contractions of the circular muscle recorded on the oral side of a distension stimulus had a low-threshold, hyoscine-sensitive and a high-threshold, hyoscine-insensitive, component. The low threshold component was unaffected by the substance P antagonists whereas the high threshold component was depressed. It is concluded that substance P nerves are effective in transmitting to the circular muscle, that they are final nerves in non-cholinergic excitatory reflexes, and that the substance P antagonist analogues can be used to distinguish actions of substance P at neural and muscle receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0878
    Keywords: Nitric oxide synthase ; Vasoactive intestinal peptide ; Immunohistochemistry ; Electron microscopy ; Submucous plexus ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract In the submucous plexus of the guinea-pig ileum, previous light-microscopic studies have revealed that vasoactive intestinal peptide (VIP)-immunoreactive and nitric oxide synthase (NOS)-immunoreactive terminals are found predominantly in association with VIP-immunoreactive nerve cell bodies. In this study, double-label immunohistochemistry at the light-microscopic level demonstrated co-localization of NOS-immunoreactivity and VIP-immunoreactivity in axon terminals in submucous ganglia. About 90% of nerve fibres with NOS-immunoreactivity or VIP-immunoreactivity were immunoreactive for both antigens; only about 10% of labelled varicosities contained only NOS-immunoreactivity or VIP-immunoreactivity. The VIP/NOS varicosities were more often seen in the central parts of the ganglia, close to the VIP-immunoreactive cell bodies. Ultrastructural immunocytochemistry with antibodies to VIP was used to determine if NOS/VIP terminals synapse exclusively with VIP-immunoreactive nerve cell bodies. We examined the targets of VIP-immunoreactive boutons in two submucous ganglia from different animals. Serial ultrathin sections were taken through the ganglia after they had been processed for VIP immunocytochemistry. For each cell body, the number of VIP inputs (synapses and close contacts) was determined. The number of VIP-immunoreactive synapses received by the cell bodies of submucous neurons varied from 0–4 and the number of VIP-immunoreactive close contacts varied from 3–10. There was no significant difference between VIP-immunoreactive nerve cell bodies and non-VIP nerve cell bodies in the number of VIP-immunoreactive synapses and close contacts they received. Thus, the implication from light microscopy that NOS/VIP terminals end predominantly on VIP nerve cells was not vindicated by electron microscopy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Stomach ; Vasoactive intestinal peptide ; Galanin ; Gastrin-releasing peptide ; Substance P-Dog
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distribution of nerve cell bodies and fibres in the canine stomach was investigated using antibodies to the general neuronal marker, neuron-specific enolase. Prominent ganglia containing many reactive nerve cells were found in the myenteric plexus of the gastric corpus and antrum. Nerve cells were absent from the submucosa of the corpus and were extremely rare in the antrum. Renoval of areas of longitudinal muscle and myenteric plexus from the corpus (myectomy), with 7 days allowed for axon degeneration, resulted in the loss of fibres reactive for galanin, gastrin-releasing peptide, substance P and vasoactive intestinal peptide from both the circular muscle and mucosa in the area covered by the lesion. Combined vagotomy and sympathetic denervation did not significantly affect these fibres, but did cause fibres reactive for calcitonin gene-related peptide to degenerate. It is concluded that the myenteric plexus of the gastric corpus, like the myenteric plexus of the small intestine and colon, is the source of nerve fibres innervating the circular muscle, but, in contrast to other regions of the gastrointestinal tract, myenteric ganglia, not submucous ganglia, are the major, or sole, source of the intrinsic innervation of the mucosa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0878
    Keywords: Key words: Nitric oxide synthase ; Vasoactive intestinal peptide ; Immunohistochemistry ; Electron microscopy ; Submucous plexus ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. In the submucous plexus of the guinea-pig ileum, previous light-microscopic studies have revealed that vasoactive intestinal peptide (VIP)-immunoreactive and nitric oxide synthase (NOS)-immunoreactive terminals are found predominantly in association with VIP-immunoreactive nerve cell bodies. In this study, double-label immunohistochemistry at the light-microscopic level demonstrated co-localization of NOS-immunoreactivity and VIP-immunoreactivity in axon terminals in submucous ganglia. About 90% of nerve fibres with NOS-immunoreactivity or VIP-immunoreactivity were immunoreactive for both antigens; only about 10% of labelled varicosities contained only NOS-immunoreactivity or VIP-immunoreactivity. The VIP/NOS varicosities were more often seen in the central parts of the ganglia, close to the VIP-immunoreactive cell bodies. Ultrastructural immunocytochemistry with antibodies to VIP was used to determine if NOS/VIP terminals synapse exclusively with VIP-immunoreactive nerve cell bodies. We examined the targets of VIP-immunoreactive boutons in two submucous ganglia from different animals. Serial ultrathin sections were taken through the ganglia after they had been processed for VIP immunocytochemistry. For each cell body, the number of VIP inputs (synapses and close contacts) was determined. The number of VIP-immunoreactive synapses received by the cell bodies of submucous neurons varied from 0–4 and the number of VIP-immunoreactive close contacts varied from 3–10. There was no significant difference between VIP-immunoreactive nerve cell bodies and non-VIP nerve cell bodies in the number of VIP-immunoreactive synapses and close contacts they received. Thus, the implication from light microscopy that NOS/VIP terminals end predominantly on VIP nerve cells was not vindicated by electron microscopy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 247 (1987), S. 377-384 
    ISSN: 1432-0878
    Keywords: Enkephalin ; Gastrin releasing peptide ; Neuropeptide Y ; Somatostatin ; Substance P ; Vasoactive intestinal peptide ; Enteric nervous system ; Intestine, small ; Dog
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The projections of nerve fibres with immunoreactivity for the peptides enkephalin (ENK), gastrin-releasing peptide (GRP), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP) and vasoactive intestinal peptide (VIP) were studied in canine small intestine by analysing the consequences of lesions of intrinsic and extrinsic nerves. Of peptides present in fibres supplying myenteric ganglia, GRP, SOM and VIP were in anally directed nerve pathways, whereas ENK and NPY were in orally directed pathways. Pathways ran for up to about 30 mm. SP fibres ran for short distances in both directions in the myenteric plexus. The circular muscle was supplied with ENK, NPY, SP and VIP fibres arising from the myenteric ganglia, whereas most mucosal SP and VIP fibres were deduced to arise from submucous ganglia. There were projections of fibres reactive for ENK, GRP, SOM, SP and VIP from myenteric ganglia to submucous ganglia. Antibodies to tyrosine hydroxylase were used to locate noradrenaline nerve fibres supplying the intestine; these fibres all disappeared when extrinsic nerves running through the mesentery to the small intestine were cut. It is deduced that there is an ordered pattern of projections of peptide-containing fibres in the canine intestine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...