Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 38 (1995), S. 1535-1554 
    ISSN: 0029-5981
    Keywords: parallel ; gradient iterative ; p finite element ; viscous flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A two-dimensional p-type finite element scheme for distributed parallel computation of viscous flows is developed. The approach is based on an element-by-element implementation of the Biconjugate Gradient Stabilized 2 iterative method coupled with a recently developed class of block preconditioners. Critical to the overall parallel performance is the parallel solution of the imbedded bilinear preconditioner. Performance results are presented for the 2-D driven cavity incompressible viscous flow problem solved using incremental continuation in the Reynolds number on the Intel Touchstone Delta. These results are used to validate a run-time model. The run-time model is then used to examine the scaling properties of the method over a range of p and h.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 38 (1995), S. 1327-1340 
    ISSN: 0029-5981
    Keywords: BLAS ; finite element ; p method ; conjugate gradient ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A high performance implementation is presented for three kernel routines commonly found in element-byelement preconditioned conjugate gradient finite element codes. These routines include forming the element stiffness matrices and loading vectors, or in the case of a non-linear problem, element residual vectors; and routines for applying element matrix-vector products. The present study considers tensor product elements of arbitrary mapping in 2-D, although the generalization to triangular elements and serendipity elements is straightforward. The implementation presented is most appropriate for high p type finite element methods, where the element matrices are relatively large and dense. This results in a set of high performance kernels for superscalar architectures, which otherwise may be memory bandwidth limited. Performance studies are presented for a representative superscalar microprocessor, the Intel i860. As these types of microprocessors are at the heart of modern workstations as well as several parallel supercomputing systems, this work is relevant across a variety of platforms. The resulting kernels yield both high performance on a variety of sequential architectures as well as a high degree of code portability through the basic linear algebra subprograms mechanism.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...