Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (2)
  • COS–1  (1)
  • 1
    ISSN: 1573-0778
    Keywords: apoptosis resistant ; bag–1 ; bcl–2 ; COS–1 ; hybridoma ; protein production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The authors established apoptosis resistant COS–1, myeloma, hybridoma, and Friend leukemia cell lines by genetically engineering cells, aiming at more efficient protein production by cell culture. COS–1 cells, which are most widely used for eukariotic gene expression, were transfected with human bcl–2 gene. Both bcl–2 and mock transfected COS–1 cells were cultured at low (0.2%) serum concentration for 9 days. The final viable cell number of the bcl–2 transfected cells was ninefold of that of the mock transfectants. Both bcl–2 and mock transfectants were further transfected with the vector pcDNA-λ containing SV40 ori and immunoglobulin λ gene for transiently expressing λ protein. The bcl–2 expressing COS–1 cells produced more λ protein than the mock transfected COS–1 cells after 4 days posttransfection. Mouse myeloma p3-X63-Ag.8.653 cells, which are widely used as the partner for preparing hybridoma, and hybridoma 2E3 cells were transfected with human bcl–2 gene. Both bcl–2 transfected myeloma and hybridoma survived longer than the corresponding original cells in batch culture. The bcl–2 transfected 2E3 cells survived 2 to 4 four days longer in culture, producing 1.5- to 4-fold amount of antibody in comparison with the mock transfectants. Coexpression of bag–1 with bcl–2 improved survival of hybridoma 2E3 cells more than bcl–2 expression alone. The bag–1 and bcl–2 coexpressing cells produced more IgG than the the cells expressing bcl–2 alone. Apoptosis of Friend murine erythroleukemia(F-MEL) cells was suppressed with antisense c-jun expression. The antisense c-jun expressing cells survived 16 days at non-growth state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3592
    Keywords: c-jun ; cell cycle ; apoptosis ; antisense ; growth deprivation ; F-MEL ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: F-MEL cells were transfected with the c-jun antisense gene located downstream of a glucocorticoid-inducible MMTV promoter, and the obtained cells were named c-jun AS cells. When the c-jun AS cells were treated with dexamethasone (DEX) in DMEM supplemented with 10% serum, the growth of the cells was completely suppressed for a duration of 16 days with a high cell viability exceeding 86%. The c-jun expression in the c-jun AS cells was suppressed moderately in the absence of DEX and strongly in the presence of DEX. The c-jun AS cells grew well and reached a density of 106 cells/mL without supplementation of any serum components. Viability was greater than 80% after the cells had been cultured for 8 days in the absence of DEX. The c-jun AS cells stayed at a constant cell density and high viability above 80% for 8 days when they were cultured in the presence of DEX under serum deprivation. In contrast, the wild type F-MEL cells were unable to grow and died by apoptosis in 3 days under serum deprivation. Internucleosomal cleavage of DNA, a landmark of apoptosis, was clearly detectable. Thus the c-jun AS cell line that is resistant to apoptosis induced by serum deprivation and can reversibly and viably be growth-arrested was established. A dual-signal model was proposed to explain the experimental result, the interlinked regulation of apoptosis, and growth by c-jun.© 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:65-72, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 118-122 
    ISSN: 0006-3592
    Keywords: apoptosis ; bcl-2 ; hybridoma ; cell survival ; antibody productivity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Human bcl-2 DNA was introduced into mouse hybridoma 2E3 cells and expressed at a high level by using BCMGSneo vector, which reportedly amplifies as multiple copies in the cells independently of their chromosomes. The high expression of bcl-2 in BCMGSneo-bcl-2 transfectants was confirmed by western blotting. In batch cultures, the overexpression of bcl-2 raised the maximum viable cell density by 45%, delayed the initiation of apoptosis by 2 days, and prolonged the viable culture period by 4 days. The delayed initiation of apoptosis was detected by emergence of the ladder pattern on DNA electrophoresis and increase of the dead cell number. The bcl-2 transfectants produced lgG1 fourfold per batch culture in comparison with 2E3 cells transfected with BCMGSneo but not with bcl-2: a little less than twofold due to the improved survival of the cells and more than twofold due to the enhanced lgG1 production rate per cell of the bcl-2 transfectants. The method to engineer hybridoma cells genetically with bcl-2 using BCMGSneo vector for increasing viability and productivity would be widely applied for improving antibody productivity of hybridoma cultures. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...