Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (4)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 14 (1972), S. 297-308 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Within the framework of a study on the oil biodegradation potential of the sea the ability of a Flavobacterium sp. and Brevibacterium sp. to metabolize a paraffinic crude oil and a chemically defined hydrocarbon mixture was investigated. Major components of the crude oil were identified by combination gas chromatography and mass spectrometry. The rate and extent of total hydrocarbon biodegradation was measured. In addition, CO2 evolution from the crude oil was continuously monitored in a shaker-mounted gas train arrangement. Degradation started after a 2 to 4 day lag period, and reached its maximum within two weeks. At this time up to 60% of the crude oil and 75% of the model hydrocarbon mixture, each added at the level of 1 ml per 100 ml artificial sea water, were degraded. Mineralization(conversion to CO2) was slightly lower due to formation of products and bacterial cell material. n-Paraffins were preferentially degraded as compared to branched chain hydrocarbons. Biodegradation of n-paraffins in the range of C12 to C20 was simultaneous; no diauxie effects were observed.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 512-524 
    ISSN: 0006-3592
    Keywords: biofiltration ; biofilter modeling ; methanol ; biodegradation ; VOC emissions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Biofiltration of solvent and fuel vapors may offer a costeffective way to comply with increasingly strict air emission standards. An important step in the development of this technology is to derive and validate mathematical models of the biofiltration process for predictive and scaleup calculations. For the study of methanol vapor biofiltration, an 8-membered bacterial consortium was obtained from methanol-exposed soil. The bacteria were immobilized on solid support and packed into a 5-cm-diameter, 60-cm-high column provided with appropriate flowmeters and sampling ports. The solid support was prepared by mixing two volumes of peat with three volumes of perlite particles (i.e., peat-perlite volume ratio 2:3). Two series of experiments were performed. In the first, the inlet methanol concentration was kept constant while the superficial air velocity was varied from run to run. In the second series, the air flow rate (velocity) was kept constant while the inlet methanol concentration was varied. The unit proved effective in removing methanol at rates up to 112.8 g h-1 m-3 packing. A mathematical model has been derived and validated. The model described and predicted experimental results closely. Both experimental data and model predictions suggest that the methanol biofiltration process was limited by oxygen diffusion and methanol degradation kinetics. © 1993 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 533-538 
    ISSN: 0006-3592
    Keywords: benzene ; toluene ; p-xylene ; competitive inhibition ; biodegradation kinetics ; cometabolic transformation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A microbial consortium and Pseudomonas strain (PPO1) were used in studying biodegradation of benzene, toluene, and p-xylene under aeorbic conditions. Studies involved removal of each compound individually as well as in mixture with the others. Both cultures exhibited a qualitatively similar behavior toward each compound. Both the pure culture and the consortium grew on benzene following Monod kinetics, on toluene following inhibitory (Andrews) kinetics, whereas neither could grow on P-xylene. Benzene and toluene mixtures were removed under cross-inhibitory (competitive inhibition) kinetics. In the presence of benzene and/or toluene, p-xylene was cometabolically utilized by both cultures, but was not completely mineralized. Metabolic intermediates of p-xylene accumulated in the medium and were identified. Benzene and toluene were completely mineralized. Cometabolic removal of p-xylene reduced the yields on both benzene and toluene. Except for cometabolism, kinetic constants were determined from data analysis and are compared with values published recently by other researchers. © 1994 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 14 (1972), S. 309-318 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Biodegradation and mineralization of petroleum, added at 1% (v/v) to freshly collected sea water, were measured using gas-liquid chromatographic, residual weight, and CO2-evolution techniques. Only 3% of the added petroleum was biodegraded and 1% was mineralized in unamended sea water after 18 days of incubation. Added individually, nitrate (10-2 M) or phosphate (3.5 × 10-4 M) supplements caused little improvement, but when added in combination, they increased petroleum biodegradation and mineralization to 70% and 42%, respectively. Attempts to clean up oil spills with the aid of microorganisms should take into consideration the nutritional deficiencies of sea water.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...