Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mathematical studies for ecosystems involving 2 predators competing for a growing prey population have shown that the 2 competitors can coexist in a state of sustained oscillations for a range of values of the system parameters. For the case of 1 suspension-feeding protozoan population, recent experimental observations suggest that the predator-prey interaction is complicated by the ability of the bacteria to grow on products produced by the lysis of protozoan cells. This situation is studied here for the case where 2 suspension-feeding protozoan populations compete for a growing bacterial population in a chemostat. Computer simulations show that the 2 protozoan populations can coexist over a range of the operating parameters. Some necessary conditions for coexistence are presented as are some speculations regarding the possible physical explanations of results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of mathematical biology 46 (1984), S. 155-174 
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract If two microbial populations compete for a single resource in a homogeneous environment with time invariant inputs they cannot coexist indefinitely if the resource competed for is not renewed by biological activity within the system. Mathematical studies have shown that in a predator-prey system, where the resource (prey) is self-renewing, the two competitors (predators) can coexist in a limit cycle. This suggests that if the resource competed for is renewed by biological activity within the system coexistence can occur in any microbial system provided that it exhibits the same features as, but without being, a predator-prey one. A food chain involving commensalism, competition and amensalism is presented here. Two subcases are considered. It is only when maintenance effects are taken into account that coexistence, in limit cycles, can occur for this system. Limit cycle solutions for the system are demonstrated with the help of computer simulations. Some necessary conditions for coexistence are presented, as are some speculations regarding the possible physical explanations of the results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 533-538 
    ISSN: 0006-3592
    Keywords: benzene ; toluene ; p-xylene ; competitive inhibition ; biodegradation kinetics ; cometabolic transformation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A microbial consortium and Pseudomonas strain (PPO1) were used in studying biodegradation of benzene, toluene, and p-xylene under aeorbic conditions. Studies involved removal of each compound individually as well as in mixture with the others. Both cultures exhibited a qualitatively similar behavior toward each compound. Both the pure culture and the consortium grew on benzene following Monod kinetics, on toluene following inhibitory (Andrews) kinetics, whereas neither could grow on P-xylene. Benzene and toluene mixtures were removed under cross-inhibitory (competitive inhibition) kinetics. In the presence of benzene and/or toluene, p-xylene was cometabolically utilized by both cultures, but was not completely mineralized. Metabolic intermediates of p-xylene accumulated in the medium and were identified. Benzene and toluene were completely mineralized. Cometabolic removal of p-xylene reduced the yields on both benzene and toluene. Except for cometabolism, kinetic constants were determined from data analysis and are compared with values published recently by other researchers. © 1994 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 328-343 
    ISSN: 0006-3592
    Keywords: biotrickling filters ; biotrickling filter modeling ; mono-chlorobenzene ; biodegradation kinetics of mono-chlorobenzene ; chlorinated VOC emissions ; biofiltration ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Removal of mono-chlorobenzene (m-CB) vapor from airstreams was studied in a biotrickling filter (BTF) operating under counter-current flow of the air and liquid streams. Experiments were performed under various values of inlet m-CB concentration, air and/or liquid volumetric flow rates, and pH of the recirculating liquid. Conversion of m-CB was never below 70% and at low concentrations exceeded 90%. A maximum removal rate of about 60 gm-3-reactor h-1 was observed. Conversion of m-CB was found to increase as the values of liquid and air flow rate increase and decrease, respectively. The effects of pH and frequency of medium replenishment on BTF performance were also investigated. The process was successfully described with a detailed mathematical model, which accounts for mass transfer and kinetic effects based on m-CB and oxygen availability. Solution of the model equations yielded m-CB and oxygen concentration profiles in all three phases (airstream, liquid, biofilm). It is predicted that oxygen has a controling effect on the process at high inlet m-CB concentrations. From independent, suspended culture, experiments it was found that m-CB biodegradation follows Andrews inhibitory kinetics. The kinetic constants were found to remain practically unchanged after the culture was used in BTF experiments for 8 months. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:328-343, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 512-524 
    ISSN: 0006-3592
    Keywords: biofiltration ; biofilter modeling ; methanol ; biodegradation ; VOC emissions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Biofiltration of solvent and fuel vapors may offer a costeffective way to comply with increasingly strict air emission standards. An important step in the development of this technology is to derive and validate mathematical models of the biofiltration process for predictive and scaleup calculations. For the study of methanol vapor biofiltration, an 8-membered bacterial consortium was obtained from methanol-exposed soil. The bacteria were immobilized on solid support and packed into a 5-cm-diameter, 60-cm-high column provided with appropriate flowmeters and sampling ports. The solid support was prepared by mixing two volumes of peat with three volumes of perlite particles (i.e., peat-perlite volume ratio 2:3). Two series of experiments were performed. In the first, the inlet methanol concentration was kept constant while the superficial air velocity was varied from run to run. In the second series, the air flow rate (velocity) was kept constant while the inlet methanol concentration was varied. The unit proved effective in removing methanol at rates up to 112.8 g h-1 m-3 packing. A mathematical model has been derived and validated. The model described and predicted experimental results closely. Both experimental data and model predictions suggest that the methanol biofiltration process was limited by oxygen diffusion and methanol degradation kinetics. © 1993 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 25 (1983), S. 2419-2439 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: It is known that two microbial populations competing for a single resource in a homogeneous environment with time-invariant inputs cannot coexist in a steady state. The case where two microbial populations compete for a single resource in a chemostat but one of them exhibits attachment to the chemostat walls is studied theoretically. Because of the cells' attachment to the walls, the environment is no longer homogeneous. The present article considers the case where the attached cells form no more than a monolayer. Other situations occur, often frequently, but we do not consider them here. Two models are used to represent the attachment to the walls: the Topiwala-Hamer model and a model which assumes that the attachment of microbial cells to the solid surfaces is a reversible process. The first model does not allow the population that exhibits wall attachment to wash out from the chemostat, in contrast to the second model (which nevertheless reduces to the first one in the limit). It has been found that in most of the possible cases for both models, the two competitors can coexist in a stable steady state for a wide range of the operating parameters space. The results of the stability analysis are discussed and analytical expressions for the conditions and the boundaries of the domains of stable coexistence are given for all the possible situations that may arise.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 31 (1988), S. 75-86 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Experimental data in the literature show that the yield of biomass from a particular nutrient when that nutrient limits growth rate is often significantly different than the yield from the nutrient when some complementary nutrient limits growth rate. This article explores some possible consequences for bioreactor dynamics of dependence of yield coefficients on the identity of the nutrient that limits growth rate.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...