Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 14 (1993), S. 337-343 
    ISSN: 0173-0835
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: We describe simulation techniques well suited to detailed investigation of the microscopic behavior of DNA during electrophoretic separation in the diffusive regime. Long polymers moving diffusively in a medium are simulated using microscopic Monte-Carlo steps. Simulations rely upon a recently introduced two-space abstract polymer that enables fine-grained massively parallel simulation. Tests of the two-space polymer dynamics are reviewed. The scaling with polymer length of the size and relaxation time of isolated polymers are shown to agree with universal scaling relations. The relaxation time is found to be significantly faster than the alternative bond-fluctuation method. Simplicity of implementation enables simulation on cellular automaton machines (CAM) including CAM-6, and a prototype of the new CAM-8, as well as other massively parallel architectures. Preliminary simulations of polymers migrating under an external field through a random medium of obstacles in two dimensions are described. Two sequences of simulations are performed, with different obstacle densities corresponding to pore sizes larger and smaller than the polymer radius of gyration. In the dilute medium polymers are characteristically draped on single obstacles. In the denser medium draping across multiple obstacles results in reduced orientation in the field direction. A demonstration of rapid 90° field direction switching results in polymer motion toward the expected intermediate direction.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...