Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-879X
    Keywords: shape-selective catalysis ; biphenyl ; isopropylation ; H-mordenite ; carbonaceous deposits ; encapsulated biphenyls
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract To understand the relationships between shape-selectivity and coke deposition in the alkylation of biphenyl over H-mordenite (HM), thermogravimetric analyses were examined for the catalyst after the reaction. The coke deposition during the catalysis was very severe over HM with low SiO/Al2O3 ratio, however, dealumination enhanced the decrease of coke deposition. Over highly dealuminated HM, volatile organic compounds, mainly biphenyl derivatives, were observed in addition to carbonaceous deposits. The deposits are produced from biphenyl derivatives on acid sites in the HM pore, and the ease of their formation is governed by acid site density and acid strength. The decrease of carbonaceous deposits and the increase of encapsulated biphenyl derivatives are related with the increase of both selectivity and yield of 4,4′-diisopropylbiphenyl (4,4′-DIPB). The increase of reaction temperature up to 250°C enhanced the catalysis over highly dealuminated HM, however, further increase of the temperature resulted in extensive decrease of the selectivity of 4,4′-DIPB. Coke deposition also increased with the temperature although its level was low. The composition of 4,4′-DIPB in encapsulated DIPB isomers remained as high as 80% in spite of a change of the distribution of bulk products.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-879X
    Keywords: Shape-selective catalysis ; biphenyl ; isopropylation ; cerium exchanged sodium mordenite ; H-mordenite ; propylene pressure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Liquid phase isopropylation of biphenyl with propylene was studied over a cerium exchanged sodium mordenite (Ce/NaM25) and a H-mordenite (HM25) with the same SiO2/Al2O3 ratio of 25. Shape-selective catalysis occurred to give 4,4′-diisopropylbiphenyl (4,4′-DIPS) in high selectivity over Ce/NaM25 under any propylene pressures. HM25 gave 4,4′-DIPS shape-selectively under high propylene pressures. However, the reaction was severely deactivated at a conversion of ca. 60% under such a low pressure as 0.8 kg/cm2 because of coke formation in the pore. The yields of 4-isopropylbiphenyl (4-IPBP) and 4,4′-DIPB decreased with the increase of those of 3-IPBP and 3,4′-DIPB because of non-selective alkylation and isomerization at external acid sites that are alive in spite of severe deactivation. No significant isomerization of 4,4′-DIPB over Ce/NaM25 was observed even at low propylene pressure. In the case of HM25, the isomerization of 4,4′-DIPB to 3,4′-DIPB occurred significantly under low propylene pressures, while it decreased under high pressure. These differences are ascribed to the differences of nature of acid sites between Ce/NaM25 and HM25 zeolites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0827
    Keywords: Bone resorption ; Osteoclast-like cell formation ; Bone Ca mobilization ; Intestinal Ca transport ; 24R,25-dihydroxy-26,27-dimethylvitamin D3
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract To determine the possibility that methyl substitution in 26- and 27-positions of 24R,25-dihydroxyvitamin D3 [24,25(OH)2D3] alters activities of the original compound, the effects of 24,25(OH)2D3 on calcium (Ca) regulating activity were compared with those of its methyl analog [24,25(OH)2(CH3)2D3] in addition to 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 24,25(OH)2D3 at 10-6 M and 24,25(OH)2(CH3)2D3 at 10-7 M and above significantly stimulated both bone resorption in neonatal mouse calvaria cultures and formation of osteoclast-like multinucleated cells (MNC) in mouse bone marrow cultures. A stimulative effect of 1,25(OH)2D3 on bone resorption and MNC formation was recognized in very low concentrations (10-11 M and above). Although a potency of 24,25(OH)2(CH3)2D3 in stimulating bone calcium (Ca) mobilization and intestinal Ca transport was higher than that of 24,25(OH)2D3, the potencies of both compounds were similar to that of 1,25(OH)2D3 unlike in vitro experiments. As 1,24R,25-trihydroxy-26,27-dimethylvitamin D3 showed almost the same effect as 24,25(OH)2(CH3)2D3, the dihydroxy form is suggested to be hydroxylated at 1α position and converted to trihydroxy form in vitamin D-deficient rats. From these results, methyl substitution in 26- and 27-position of 24,25(OH)2D3 was found to elevate Ca regulating activity of the original compound. In addition, it is suggested that the basis for a similarity in potency between 1,25(OH)2D3 and 24,25(OH)2D3 or its dimethyl analog in vitamin D-deficient rats is likely the result of 1 α-hydroxylation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0827
    Keywords: Bone resorption ; Osteoclast formation ; Resorption lacunae ; 24-epi-1α-hydroxyvitamin D2 ; 24-epi-1α,25-dihydroxyvitamin D2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract Bone-resorbing activities of 24-epi-1α-hydroxyvitamin D2 [24-epi-1α(OH)D2], 24-epi-1α,25-dihydroxyvitamin D2 [24-epi-1,25(OH)2D2], and 1α,24S,25-trihydroxyvitamin D2 [1,24S,25(OH)3D2], which might be a metabolite of 24-epi-1,25(OH)2D2, were investigated. In an in vitro bone resorption test, the activity of 24-epi-1α(OH)D2 was similar to that of 1α-hydroxyvitamin D3 [1α(OH)D3] at 10-9 M-10-6 M. The activity of 24-epi-1,25(OH)2D2 was weaker than that of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] at 10-11 M-10-8 M. On the other hand, the activity of 1,24S,25(OH)3D2 was similar to that of 24-epi-1,25(OH)2D2 at 10-11 M-10-9 M. In the formation assay of osteoclast-like cells, the activity of 24-epi-1α(OH)D2 was weaker than that of 1α(OH)D3 at 10-7 M. The activity of 24-epi-1,25(OH)2D2 was almost similar to that of 1,25(OH)2D3 at 10-11 M-10-7 M. The activity of 1,24S,25(OH)3D2 was significantly weaker than that of 24-epi-1,25(OH)2D2 at 10-11 M-10-9 M. In the two experiments, the potencies of 24-epi-1,25(OH)2D2 were about 100 times higher than those of 24-epi-1α(OH)D2. In an in vivo/in vitro bone resorption test, the activity of 24-epi-1α(OH)D2 was almost similar to those of 1α(OH)D3 and 1,25(OH)2D3 and higher than those of 24-epi-1,25(OH)2D2 and 1,24S,25(OH)3D2. 24-epi-1α-(OH)D2 and 1α(OH)D3 were longer lasting than 24-epi-1,25(OH)2D2 and 1,25(OH)2D3 in this experiment. These results suggested that 24-epi-1α(OH)D2 as well as 1α(OH)D3 was converted into dihydroxy form in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...