Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 90 (1992), S. 47-53 
    ISSN: 1432-1106
    Keywords: Energy metabolism ; Free nucleotides ; Ischemia ; Brain ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Loss of cellular ion homeostasis during anoxia, with rapid downhill fluxes of K+, Ca2+, Na+ and Cl-, is preceded by a slow rise in extracellular K+ concentration (K e + ), probably reflecting early activation of a K+ conductance. It has been proposed that this conductance is activated by either a rise in intracellular calcium concentration (Ca i 2+ ), or by a fall in ATP concentration. In a previous study from this laboratory (Folbergrová et al. 1990) we explored whether the early activation of a K+ conductance could be triggered by a rise in Ca i 2+ . To that end, labile metabolites and phosphorylase a, a calcium sensitive enzyme, were measured after 15, 30, 60 and 120 s of complete ischemia (“anoxia”). In the present study, we investigated whether brief anoxia is accompanied by changes in ATP/ADP ratio, or in the phosphate potential, which could cause activation of a K+ conductance. To provide information on this issue, we added a group with 45 s of anoxia to the previously reported groups, and derived changes in intracellular pH (pHi). This allowed calculations of the free concentrations of ADP (ADPf) and AMP (AMPf) from the creatine kinase and adenylate kinase equilibria, and hence the derivation of ATP/ADPf ratios. In performing these calculations we initially assumed that the free intracellular Mg2+ concentration remained unchanged at 1 mM. However we also explored how a change in Mg i 2+ of the type described by Brooks and Bachelard (1989) influenced the calculation. The results showed that ADPf must have risen to 150–200% of control within 15 s, and to 330–350% of control within 45 s of anoxia. The concentration of AMPf should have increased 2–4 fold in 15 s and 10–20 fold in 45 s. Thus although tissue ATP concentration usually remains 〉90% of control within the first 30s of anoxia, and 〉80% of control within the first 45 s, the ATP/ADPf ratios change markedly at a time when alterations in ion homeostasis are dominated by a moderate rise in K e + , and long before massive ion fluxes occur and the cells depolarise (after about 60–70 s). Such early changes in ATP/ADPf ratio, or in phosphate potential, could well influence reactions which are coupled to ATP hydrolysis, and perhaps lead to activation of ATP-dependent K+ conductances.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Dimethylthiourea ; Brain ; Ischaemia ; Middle cerebral artery occlusion ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The objective of this study was to assess whether dimethylthiourea (DMTU), an established free radical scavenger, ameliorates ischaemic damage due to 2–3 h of transient middle cerebral artery (MCA) occlusion, induced by an intraluminal filament. A major point adressed was whether DMTU given before MCA occlusion only delayed the “maturation” of the damage, or if it had a lasting effect on infarct size. The end point was morphological, and either encompassed triphenyltetrazolium chloride (TTC) staining of tissue slices after 24 h or 48 h of recovery, or histopathological assessment of infarct size after 7 days of recovery. In a preliminary series of experiments, rats were subjected to 3 h of MCA occlusion, and infarct volume was assessed by TTC staining after 24 h of recovery. DMTU in a dose of 750 mg/kg reduced infarct volume by more than 50%. However, due to a high mortality rate, that protocol was not subsequently pursued. When the ischaemia duration was reduced to 2 h and the DMTU dose to 400 mg/kg, a similar amelioration of the tissue damage was observed. However, since DMTU reduced a spontaneous rise in body temperature to 39.0–39.5°C, DMTU-treated animals in the main series of experiments with 24 and 48 h of recovery were treated so that they had the same temperature rise as the saline controls. Under such constant temperature conditions, the effect of DMTU at 24 h of recovery was borderline (P= 0.052) and at 48 h it was nil. The lack of a lasting effect of DMTU was supported by the findings on evaluation of infarct area after 7 days of recovery. The results raise the important question whether DMTU, and perhaps other free radical scavengers, delay rather than ameliorate the ischaemic lesion developing after transient MCA occlusion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 2 (1966), S. 176-190 
    ISSN: 1432-1106
    Keywords: Brain ; CSF ; Bicarbonate ; Acidosis ; Alkalosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Changes in the bicarbonate and the chloride concentrations in the brain, as well as in the bicarbonate concentration of the cisternal cerebrospinal fluid (CSF), were measured in rats made acidotic or alkalotic for a period of 6 hours by means of intraperitoneal injections of acid and basic solutions. The difference in the plasma chloride concentrations between the acidotic and the alkalotic groups was 8.6 mEq/l, while the corresponding difference in the tissue concentrations was 4.5 mEq/kg of wet tissue. These results demonstrate that the chloride ion equilibrated between the plasma and the “chloride space” of the brain tissue under the conditions of the experiments. However, although the marked difference in the plasma bicarbonate concentrations between the same groups (17.4 mEq/l) was accompanied by a difference in the CSF bicarbonate concentrations of 7.6 mEq/kg, there were no significant differences in the actual tissue bicarbonate concentrations, attributable to the extracellular bicarbonate changes. Provided that CSF is representative of the extracellular fluid (ECF), these results can either be interpreted to show that the bicarbonate of the ECF is distributed in a very small tissue compartment (probably less than 5 per cent of the tissue volume), or that nonrespiratory acid-base changes are not accompanied by net fluxes of bicarbonate ions between the plasma and the extracellular space of the brain tissue but rather by redistributions of bicarbonate ions between extra-and intracellular fluids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 104 (1995), S. 462-466 
    ISSN: 1432-1106
    Keywords: Transient ischemia ; Extracellular calcium ; Acidosis ; Brain ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The object of the study was to find out how preischemic hyperglycemia (in normocapnic animals) or excessive hypercapnia (in normoglycemic animals) affect the calcium transient during ischemia, as this can be assessed by measurements of the extracellular calcium concentration ([Ca2+]e). To that extent, normocapnic-normoglycemic control animals were compared with animals with induced hyperglycemia or hypercapnia, all being subjected to 10 min of forebrain ischemia, the [Ca2+]e and d.c. potential being measured with ion-sensitive glass microelectrodes. Hyperglycemia and hypercapnia delayed the loss of ion homeostasis following induction of ischemia. Furthermore, both hyperglycemia and hypercapnia reduced the delay of Ca2+ extrusion upon recirculation. As a result, both hyperglycemia and hypercapnia significantly reduced the ischemic calcium transient, as this was assessed by calculating the duration of maximal calcium load of cells. The results make it less likely that aggravation of brain damage by hyperglycemia or excessive hypercapnia is related to a further derangement of cell calcium homeostasis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-6903
    Keywords: Brain ; caspase ; cytochrome c ; hypoglycemia ; Bcl-2 family
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In this study, we explored if a 30 minute period of hypoglycemic coma yields damage which shows some features associated with apoptosis. To that end, we induced insulin-hypoglycemic coma of 30 min duration, and studied brain tissues after the coma period, and after recovery period of 30 min, 3 h, and 6 h. Histopathological data confirmed neuronal damage in all of the vulnerable neuronal populations. Release of cytochrome c (cyt c), assessed by Western Blot, was observed in the neocortex and caudoputamen after 3 and 6 h of recovery. In these regions, the caspase-like activity increased above control after 6 h of recovery. By laser-scanning confocal microscopy, a clear expression of Bax was observed after 30 min of coma in the superficial layers of the neocortex, reaching a peak after 30 min of recovery. Punctuate immunolabeling surrounding nuclei in soma and dendrites in cortical pyramidal neurons likely represents mitochondria, which suggests that Bax protein assembled at the surface of mitochondria in vulnerable neocortical neurons. It is concluded that although previous morphological data have suggested that cells die by necrosis, neuronal damage after hypoglycemic coma shows some features of apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...