Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Sequence characterised amplified region (SCAR)  (2)
  • CAPS markers  (1)
  • Gene clustering Bulked segregant analysis  (1)
Material
Years
Keywords
  • 1
    ISSN: 1432-2242
    Keywords: Keywords Resistance ; Tomato powdery mildew ; Tomato ; Mapping ; Oidium lycopersicum ; RFLP ; Sequence characterised amplified region (SCAR)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Lycopersicon hirsutum G1.1560 is a wild accession of tomato that shows resistance to Oidium lycopersicum, a frequently occurring tomato powdery mildew. This resistance is largely controlled by an incompletely dominant gene Ol-1 near the Aps-1 locus in the vicinity of the resistance genes Mi and Cf-2/Cf-5. Using a new F2 population (n=150) segregating for resistance, we mapped the Ol-1 gene more accurately to a location between the RFLP markers TG153 and TG164. Furthermore, in saturating the Ol-1 region with more molecular markers using bulked segregant analysis, we were able to identify five RAPDs associated with the resistance. These RAPDs were then sequenced and converted into SCAR markers: SCAB01 and SCAF10 were L. hirsutum-specific; SCAE16, SCAG11 and SCAK16 were L. esculentum-specific. By linkage analysis a dense integrated map comprising RFLP and SCAR markers near Ol-1 was obtained. This will facilitate a map-based cloning approach for Ol-1 and marker-assisted selection for powdery mildew resistance in tomato breeding.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words Bacterial canker ; L. peruvianum ; Restriction fragment length polymorphism (RFLP) ; Sequence characterised amplified region (SCAR) ; Quantitative trait locus (QTL)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Lycopersicon peruvianum LA2157 originates from 1650 m above sea level and harbours several beneficial traits for cultivated tomatoes such as cold tolerance, nematode resistance and resistance to bacterial canker (Clavibacter michiganensis ssp. michiganensis). In order to identify quantitative trait loci (QTLs) for bacterial canker resistance, a QTL mapping approach was carried out in an F2 population derived from the interspecific F1 between Lycopersicon esculentum cv Solentos and L. peruvianum LA2157. Three QTLs for resistance mapped to chromosomes 5, 7 and 9 respectively. The resistance loci were additive and co-dominant with the QTL on chromosome 7 explaining the largest part of the variation for resistance in the F2 population. The combination of this QTL with either of the other two QTLs conferred a resistance similar to the level in the resistant parent L. peruvianum. Some RFLP markers flanking this QTL on chromosome 7 were converted into SCAR markers allowing efficient marker-assisted selection of plants with high resistance to bacterial canker.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Lycopersicon hirsutum ; Resistance gene mapping ; Oidium lycopersicum ; Gene clustering Bulked segregant analysis ; Powdery mildew ; Tomato RAPD ; Ol-1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The inheritance of resistance to powdery mildew (Oidium lycopersicum) in Lycopersicon hirsutum was investigated by disease tests in segregating populations obtained by hybridising tomato (L. esculentum) cv Moneymaker with the wild relative L. hirsutum G1.1560. One incompletely dominant gene Ol-1 was found to largely control resistance to the disease. To map Ol-1, DNA pools from seven resistant and ten susceptible F2 plants were analyzed for random amplified polymorphic DNA (RAPD). With 32 primers tested, one RAPD, primed with the sequence 5′-GACGTGGTGA-3′, was observed between the susceptible and the resistant bulks, which cosegregated with resistance in the F2 population of L. esculentum × L. hirsutum G1.1560. This RAPD was mapped on chromosome 6 by using an F2 (L. esculentum × L. pennellii) already mapped for 49 RFLPs. RFLP analysis of the F2 from L. esculentum cv Moneymaker × L. hirsutum G1.1560 demonstrated that Ol-1 maps near the Aps-1 region on chromosome 6, in the vicinity of the resistance genes to Meloidogyne spp. (Mi) and to Cladosporium fulvum (Cf-2/Cf-5).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1617-4623
    Keywords: Key wordsLycopersicon esculentum ; Cladosporium fulvum ; Pathogenicity ; CAPS markers ; Hcr9
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A gene has been identified in tomato, which confers resistance to Cladosporium fulvum through recognition of the pathogenicity factor ECP2. Segregation analysis of F2 and F3 populations showed monogenic dominant inheritance, as for previously reported Cf resistances. The gene has been designated Cf-ECP2. Using several mapping populations, Cf-ECP2 was accurately mapped on chromosome 1, 7.7 cM proximal to TG236 and 6.0 cM distal to TG184. Although Cf-ECP2 is linked to Cf-4, it is not located in the Hcr9 cluster “Milky Way”. Therefore, Cf-ECP2 is the first functional Cf homologue on chromosome 1 that does not belong to this Hcr9 cluster. No recombination events between Cf-ECP2 and CT116 have been observed in three populations tested, representing 282 individuals. The low value for the physical distance per cM around CT116 reported previously and the high probability that Cf-ECP2 is also a member of a Hcr9 cluster will facilitate cloning of the locus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...