Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Informatik, Forschung und Entwicklung 14 (1999), S. 203-217 
    ISSN: 0949-2925
    Keywords: Schlüsselwörter: Workflow-Management, Architekturen, verteilte Ausführung, Skalierbarkeit, Simulation ; Key words: Workflow management, architectures, distributed execution, scalability, simulation ; CR Subject Classification: H.4.1, H.1.0, C.2.4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Description / Table of Contents: Abstract. In enterprise-wide workflow management systems (WfMS) the workflow engine may have to cope with a very high load. In addition, the availability of such a system must be high. Many architectures for scalable WfMS have been proposed in the literature, which are based on different distribution models of the workflow engine. These distribution models are analyzed, compared, and classified. Based on this classification, two example scenarios are used to simulate and compare the load resulting for the different distribution models.
    Notes: Zusammenfassung. In unternehmensweiten Workflow-Management-Systemen (WfMS) kann die von der WF-Engine zu bewältigende Last sehr groß werden. Außerdem werden hohe Anforderungen an die Verfügbarkeit eines solchen Systems gestellt. Deshalb wurden in der Literatur zahlreiche Architekturen für skalierbare WfMS vorgeschlagen, die auf unterschiedlichen Verteilungsmodellen für die WF-Engine basieren. Im vorliegenden Beitrag werden diese Verteilungsmodelle analysiert, verglichen und klassifiziert. Aufbauend auf diese Klassifikation wird für zwei Beispielszenarien die bei den verschiedenen Verteilungsmodellen entstehende Last simuliert und verglichen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-1948
    Keywords: Conducting materials ; Charge-transfer complexes ; Radical-anion salts ; Alloyed ligands ; Crystal structures ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The new members of the series of 2,5-disubstituted DCNQIs, 1d (Cl/OMe), 1e (Br/OMe), 1j (Cl/I), 1k (Br/I), 1l (I/I), form conducting charge-transfer complexes with TTF (tetrathiofulvalene) which are comparable to known DCNQI/TTFs. From these DCNQIs highly conducting radical-anion salts [2-X, 5-Y-DCNQI]2M (M = Li, Na, K, NH4, Tl, Rb, Ag, Cu) can also be prepared either from the DCNQIs and MI (not AgI), on a metal wire (Ag, Cu), or by electrocrystallization (M = Tl, Ag,Cu). For better crystals a method using periodical switching between reduction and partial oxidation has been developed. With CF3 (large, strongly electron-attracting) as the substituent in DCNQIs 1m (OMe/CF3) and 1n (Me/CF3), conducting TTF complexes remain whereas only 1n yields an insulating copper salt. DCNQI-Cu salts with high conductivities are obtained with alloys containing two or three different DCNQIs. The temperature-dependent conductivities of DCNQI-M salts (other than copper) are similar to those of metal-like semiconductors. All new DCNQI-Cu salts are metallic [M] down to low temperatures, except [1d (Cl/OMe)]2Cu which undergoes a sharp phase transition to an insulating state[M → I]. By variation of the ligands or their ratios in conducting alloys of DCNQI-Cu salts temperature-dependent conductivities can be tuned from M → I to M. In addition, alloying three ligands produced for the first time a radical salt with temperature-independent conductivity from 5 to 300 K. Most remarkably, alloys of the type [(2,5-Me2DCNQI)m] Cu/[{2,5-(CD3)2-DCNQI}n]2Cu which exhibit a sharp M → I phase transition on further cooling reenter the conducting state by an I → M transition, with changes of ca. 108 Scm-1 both ways. For the first time in the field of organic metals crystal structures of DCNQI-copper salts have been determined by X-ray powder diffraction methods and refined by Rietveld analysis. Unit cell data, coordination angles and distances of the π planes are in excellent agreement with the single-crystal X-ray data. However, bond lengths and angles of the ligands are to be less accurate. This powder method proves to be most valuable if only microcrystalline material is available.Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2005/1999/98247_s.pdf or from the author.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...