Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1432
    Keywords: Squalus acanthias ; Carbamoyl-phosphate synthetase ; Promoter ; Rana catesbeiana ; TATA box ; TACAAA ; C/EBP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Carbamoyl-phosphate synthetase III (CPSase III) ofSqualus acanthias (spiny dogfish) is a nuclear-encoded mitochondrial enzyme that catalyzes glutamine-dependent formation of carbamoyl phosphate for urea synthesis. In this paper we report the results of cloning a 10-kb segment of genomic DNA which includes the region flanking the 5′ end of the spiny dogfish CPSase III gene. A total of 1,295 base pairs of sequence straddling the start codon was obtained. Primer extension experiments revealed that the transcription start site is the G located 114 residues upstream of the translation start codon ATG. The first exon has 240 base pairs, including the 5′ untranslated region, the coding sequence for the signal peptide (38 amino acids), and the four N-terminal amino acids of the mature enzyme. The boundary of the first exon and the first intron of the CPSase III gene is concordant with that of rat and frog (Rana catesbeiana) CPSase I, which have been suggested to have evolved from CPSase III. The putative TATA box sequence, TACAAA, is located at position −31 with an uncommonly found C at the third position. Two C/EBP binding site sequences, ATTCTGCAAG (−405 to −397) and GTGCAGTAAG (−168 to −160), were identified in the promoter region, which suggests that spiny dogfish CPSase III might be subjected to transactivation of transcription by C/EBP-related proteins, as has been reported for rat CPSase I. The preparation and binding of a recombinant RcC/EBP-1 protein (theR. catesbeiana homolog of the mammalian C/EBPα) to the two spiny dogfish C/EBP binding sequences are described. Two putative heatshock binding elements were also identified in the promoter region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4919
    Keywords: angiotensinogen ; fibronectin ; gene expression ; transcriptional regulation ; cardiomyocytes ; vascular smooth muscle cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Angiotensinogen (AGT) is a unique substrate of the renin-angiotensin system and fibronectin (FN) is an important component of the extracellular matrix. These play critical roles in the pathophysiological changes including cardiovascular remodeling and hypertrophy in response to hypertension. This study was performed to examine the regulation of AGT and FN gene in cardiac myocytes (CMs) and vascular smooth muscle cells (VSMCs) in response to mechanical stretch. Mechanical stretch significantly increased the AGT mRNA expression in CMs, while these stimuli did not affect FN mRNA levels. On the other hand, Mechanical stretch upregulated FN mRNA levels in VSMCs, whereas no increase in AGT mRNA levels was observed in response to stretch stimuli. An angiotensin II type 1 (AT1) receptor antagonist (CV11974) significantly decreased these stretch-mediated increases in mRNA level and promoter activity of the AGT and FN gene, whereas angiotensin II type 2 (AT2) receptor antagonist (PD123319) did not affect the induction. These results indicate that mechanical stretch activates transcription of the AGT and FN gene mainly via AT1 receptor-pathway in CMs and VSMCs. Furthermore, mechanisms regulating AGT and FN gene seem to be different between CMs and VSMCs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...