Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (76)
  • Cell & Developmental Biology  (59)
  • Chemical Engineering  (52)
  • Engineering General  (9)
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 28 (1988), S. 583-591 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An analytical methodology was developed capable of describing interrelations between thermal processing and polymer structure for thermoplastic based composite laminates. Specifically, this modeling methodology was used to describe experimental results generated with a specially designed match die quench mold by processing both neat PEEK polymer and carbon fiber reinforced laminate samples at different cooling rates. The developed model accurately predicted temperature profiles for PEEK laminates of different thicknesses, under normal as well as extreme quenching conditions of 114°C/s. surface cooling rates that are possible to generate with the quench mold. In general, the modeling methodology is capable of predicting a part's thermal profile during processing in terms of the composite's microscopic intrinsic properties (fiber and matrix), composition, and lamina orientation. Furthermore, by coupling to the thermal profile description, a previously developed crystallization kinetics model for PEEK polymer and its carbon reinforced composite, a quantitative description of structural development during processing was obtained. Thus, with this analytical methodology, a skin-core crystallinity profile, where the crystallinity varies with part-thickness as a result of uneven cooling experienced during processing, was predicted both for the neat PEEK polymer and its carbon reinforced laminate forms. Finally, the developed methodology clearly established the interplay of both microscopic heat transfer and kinetics of crystallization/solidification of the matrix that must be accounted for in predicting the final structure of a carbon fiber reinforced laminate that will, in turn, govern microscopic and macroscopic performance.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 28 (1988), S. 634-639 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Neat poly(ether-ether-ketone) (PEEK) and carbon fiber reinforced PEEK (APC-2) specimens were prepared using a variety of cooling rates to achieve a range of crystallinities. Amorphous specimens were exposed to a variety of fluids to determine the penetrant types which are able to strongly influence the material. This allowed the estimation of the solubility parameter and hydrogen bonding index for PEEK to be 9.5 and 3.1, respectively. Methylene chloride was used to investigate the kinetics of penetrant sorption. The data demonstrated Case II behavior, with the initial crystallinity having a pronounced effect on both the kinetic and equilibrium data. Accordingly, a model was proposed capable of describing the sorption level and penetration depth as a function of time given the sample crystallinity and sorption temperature. With Case II behavior there was no difference in the sorption kinetics of neat and fiber reinforced PEEK. Finally, the dynamic mechanical properties measured during sorption were found to be dependent on the sorption process.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 31 (1991), S. 333-352 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The dynamic behavior of two continuous stirred tank reactors in series has been investigated for free radical solution polymerization of styrene with a binary mixture of two initiators having different thermal decomposition activities. For a wide range of initiator feed composition, both reactors exhibit quite complex nonlinear steady state and transient behavior. When the reactor residence time is used as a bifurcation parameter, the second reactor can have up to five steady states. For certain range of reactor operating conditions, bifurcations to various types of periodic solutions have been observed, such as Hopf bifurcation, isolas, period doubling, period-doubling cascade, and homoclinics. The effects of other reactor variables, such as total initiator concentration, coolant temperature, and reactor volume ratio on the reactor dynamics, are illustrated to show the complex dynamic behavior of the two-reactor system catalyzed by a mixture of t-butyl perbenzoate and benzoyl peroxide.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The dynamic behavior of the solution polymerization of styrene in a continuous stirred tank reactor is analyzed with a mixture of tert-butyl perbenzoate and benzoyl peroxide as an initiator system. In the modeling of the reactor, a viscosity dependent reactor wall heat transfer coefficient is used to account for the changing heat transfer efficiency as monomer conversion and polymer molecular weight increase. The steady state and bifurcation behaviors have been investigated with the reactor residence time, initiator feed composition, initiator concentration, feed solvent volume fraction, and coolant temperature as bifurcation parameters. Unlike the reactors with constant heat transfer coefficient, the present system exhibits relatively simple steady state and dynamic bifurcation behaviors. Oscillatory behavior is observed only when the solvent volume fraction in the feed exceeds 0.2. The dynamic simulation of the reactor also indicates that a feedback temperature controller may fail to maintain the reactor temperature when the heat transfer coefficient changes as a result of process disturbances.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 21 (1985), S. 329-347 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Recently developed solid modelling systems for the design of complex physical solids using interactive computer graphics offer the exciting possibility of an integrated design/analysis system. Called geometric modellers, these systems build complex solids from primitive solids (cubes, cylinders, spheres, solid patches, etc.) and macro solids (combination of primitives)3, 4, 8, 16, 18, 25, 38. To provide an effective structural analysis capability for these systems, methods must be devised to ease the burden of discretizing the solid geometry into a user controlled (usually locally graded) finite element mesh. The purpose of this paper is to describe an interactive solid mesh generation system capable of generating valid meshes of well-proportional tetrahedral finite elements for the decomposition of multiply connected solid structures. The system uses a semi-automatic node insertion procedure to locate element node points within and on the surface of a structure. An independent automatic three-dimensional triangulator then accepts these nodes as input and connects them to form a valid finite element mesh oftetrahedral elements. Although this report makes use of a modeller based on a constructive solid geometry representation (a so-called CSG modeller), the mesh generation strategy elaborated herein is completely general and makes no particular use of the CSG representation.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 25 (1988), S. 269-282 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The goal of mathematical modelling of sheet metal forming processes is to provide predictive tools for use in the design of stamping processes and the selection of sheet materials. Most current approaches to finite element modelling of large deformation, elastic-plastic sheet metal forming problems use a rate form of the virtual work (equilibrium) equations, and a single-field finite element representation of the displacement components. Called the incremental method, this approach does not produce approximations which satisfy the discrete equilibrium equations at all times, and consequently it demands small time steps to insure stability and numerical accuracy. This paper describes a variant of the mixed method in which displacements, stresses, effective strain and pressures are all given separate finite element representations. The equilibrium equations in non-rate form are discretized to produce a system of algebraic equations which are coupled with the constitutive equations and then integrated using state-of-the-art numerical software. When used to model rate sensitive sheet materials in hydrostatic bulging, plane strain punch stretching and hemispherical punch stretching, the new approach proved to be between 6 and 26 times as fast as the old incremental method.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 11 (1977), S. 1405-1421 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: In this paper we describe a new class of locally refined macro finite elements which are especially amenable to the use of substructuring techniques for the efficient solution of the resulting idealization. The tools and guidelines illustrated by the examples of modelling crack tips, point load singularities and singularities at re-entrant corners should enable an analyst to construct other such blended macro elements specifically tailored to his particular class of problems. The use of such substructured macro elements in finite element calculations permits substantial reduction in the manual effort of data preparation and the computational cost of numerical solution.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 12 (1978), S. 1841-1851 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A common method for numerically approximating two-point parabolic boundary value problems of the form ut = L[u]+f(u) defined of the semi-infinite strip S = [0, 1]×[0, ∞] is to first discretize the spatial operator in the differential equation and then solve for the time evolution. Such an approach typically involves solving a system of algebriaic equations at a sequence of time steps. In this paper we take a different approach and subdivide S into a collection of semi-infinite substrips Si = [xi, xi+1]×[0, ∞], and use blending function techniques to derive finite parameter functions ei(x, t) defined on Si. Spectral matching methods are used in deriving ei to ensure that (u - ei) can be made small on Si. Galerkin's method, with associated integration sover the entire space-time domain S, is then used to generate approximations to u(x, t) based upon the so defined infinite element (ei, Si). Approximations are hence found for all (x, t) in S by solving one well structed system of algebraic equations. We apply the method to several linear and non-linear problms.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 20 (1984), S. 241-253 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Recently developed computer aided design systems for the design and modification of complex physical solids using interactive computer graphics offer the exciting possibility of an integrated design/analysis system. Called geometric modellers, these systems build complex solids from primitive solids (cubes, cylinders, spheres, etc.) and macro solids (combinations of primitives). To provide an effective finite element analysis capability for these systems, methods must be devised to ease the burden of discretizing the solid geometry into a user controlled finite element mesh. In this paper we describe a new class of transitional blended finite elements which make substantially simpler the task of finite element mesh generation and local mesh refinement. Computational experience indicates that numerical accuracy is not compromised by use of these flexible elements.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 23 (1986), S. 847-862 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Many current approaches to finite element modelling of large deformation elastic - plastic forming problems use a rate form of the virtual work (equilibrium) equations, and a finite element representation of the displacement components. Called the incremental method, this approach produces a three-field formulation in which displacements, stresses and effective strain are dependent variables. Next, the formulation is converted to a one-field displacement formulation by an algebraic time discretization which uses a low order explicit time-stepping procedure to integrate the equations. This approach does not produce approximations which satisfy the discrete equilibrium equations at all times and, moreover, the advantage of the single-field algebraic formulation is realized at the expense of very small time steps needed to produce stability and accuracy in the numerical calculations.This paper describes a variant of the mixed method in which all three field variables (displacements, stresses and effective strain) are given finite element representations. The discrete equilibrium equations then generate a nonlinear system of algebraic equations whose solutions represent a manifold, while the constitutive equations form a system of ordinary differential equations. A commercially available, variable time step/variable order code is then used to integrate this differential/algebraic system. When applied to the problem of hydrostatic bulging of a membrane, the new approach requires far less computer time than the incremental method.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...