Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 23 (1986), S. 847-862 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Many current approaches to finite element modelling of large deformation elastic - plastic forming problems use a rate form of the virtual work (equilibrium) equations, and a finite element representation of the displacement components. Called the incremental method, this approach produces a three-field formulation in which displacements, stresses and effective strain are dependent variables. Next, the formulation is converted to a one-field displacement formulation by an algebraic time discretization which uses a low order explicit time-stepping procedure to integrate the equations. This approach does not produce approximations which satisfy the discrete equilibrium equations at all times and, moreover, the advantage of the single-field algebraic formulation is realized at the expense of very small time steps needed to produce stability and accuracy in the numerical calculations.This paper describes a variant of the mixed method in which all three field variables (displacements, stresses and effective strain) are given finite element representations. The discrete equilibrium equations then generate a nonlinear system of algebraic equations whose solutions represent a manifold, while the constitutive equations form a system of ordinary differential equations. A commercially available, variable time step/variable order code is then used to integrate this differential/algebraic system. When applied to the problem of hydrostatic bulging of a membrane, the new approach requires far less computer time than the incremental method.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...