Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 105 (1980), S. 63-72 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: There have been very few studies on ribonucleotide reductase activity in human tissue. In this report we describe a rapid and convenient procedure for determining purine and pyrimidine ribonucleotide reduction in normal human diploid fibroblasts and use the method to examine some general properties of the activity in these cells. ADP and CDP reductase was characterized for its response to the positive effectors, ATP and dGTP, the negative effector dATP, and the reducing agent dithiothreitol. Apparent Km values for ADP and CDP were determined to be 0.1 mM and 0.04 mM respectively. The antitumor agent hydroxyurea inhibited both purine and pyrimidine reductase in a noncompetitive fashion, giving Ki values of 0.40 mM and 0.41 mM for ADP and CDP respectively. These Ki estimates are about four to five times higher than those reported for some permanent cell lines. An examination of the cytotoxic effects of hydroxyurea indicated a close correlation between the concentration of drug which inhibited enzyme activity and decreased colony-forming ability.Clearly the ability to investigate ribonucleotide reduction in low numbers of normal human diploid cells will be useful for genetic and biochemical studies.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 106 (1981), S. 309-319 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We describe the isolation and characterization of a Chinese hamster ovary cell line selected for resistance to N-carbamoyloxyurea. Using the mammalian cell permeabilization assay developed in our laboratory, a detailed analysis of the target enzyme, ribonucleotide reductase (EC 1.17.4.1), was carried out. Both drug-resistant and parental wild-type cells required the same optimum conditions for enzyme activity. The Ki values for N-carbamoyloxyurea inhibition of CDP reduction were 2.0 mM for NCR-30A cells and 2.3 mM for wild-type cells, while the Ki value for ADP reduction was 2.3 mM for both cell lines. Although the Ki values remained essentially unchanged, the Vmax values for NCR-30A cells were 1.01 nmoles dCDP formed/5 × 106 cells/hour and 1.83 nmoles dADP/5 × 106 cells/hour, while those for the wild-type cells were 0.49 nmoles dCDP produced/5 × 106 cells/hour and 1.00 nmoles dADP/5 × 106 cells/hour. This approximate twofold increase in reductase activity at least partially accounts for a 2.6-fold increase in D10 value for cellular resistance to N-carbamoyloxyurea exhibited by NCR-30A cells. The NCR-30A cell line was also cross-resistant to the antitumor agents, hydroxyurea and guanazole. No differences in Ki values for inhibition of CDP and ADP reduction by these two drugs were detected and cellular resistance could be entirely accounted for by the elevation in activity of the reductase in the NCR-30A cell line. The properties of N-carbamoyloxyurea-resistance cells indicate they should be useful for further investigations into the regulation of mammalian enzyme activity.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 94 (1978), S. 287-298 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Ribonucleotide reduction was measured in Chinese hamster ovary cells made permeable to nucleotides by treatment with the detergent Tween-80. When compared to the respective ribonucleotide reductase activity in partially purified cell extracts, CDP and GDP reductase activities in permeabilized cells responded in a similar fashion to dithiothreitol, pH, MgCl2, FeCl3, substrate concentration and the presence of positive or negative allosteric effectors. At low protein concentrations both CDP and GDP reduction with whole cells increased linearly with cell number and was greater than the activity in corresponding cell extracts.Permeabilized cells were used to measure the level of CDP and GDP reductase in a hamster cell line resistant to the cytotoxic effects of hydroxyurea. The hydroxyurea-resistant cell line contained four to ten times more CDP and GDP reductase activity compared to parental or revertant cell lines.The permeabilized cell assay was also used to measure CDP and GDP reductase activities in Chinese hamster ovary cells synchronized by isoleucine starvation. CDP reductase activity was low in G1 arrested cells but increased 10-fold by 16 hours after the readdition of isoleucine to the growth medium. GDP reductase, which is present at much higher levels, is similarly induced after isoleucine addition, but only by 2-fold. The maximum activity of both CDP and GDP reductase occurred from 14 to 16 hours after isoleucine addition, which corresponded to the period of maximum DNA synthesis.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 97 (1978), S. 87-97 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The kinetic properties of partially purified ribonucleotide reductase from Chinese hamster ovary cells have been investigated. Double reciprocal plots of velocity against substrate concentration were found to be linear for three the substrates tested, and yielded apparent Km values of 0.12 mM for CDP, 0.14 mM for ADP and 0.026 mM for GDP. Hydroxyurea, a potent inhibitor of ribonucleotide reduction, was tested against varying concentrations of ribonucleotide substrates and inhibited the enzyme activity in an uncompetitive fasion. Intercept replots were linear and exhibited Ki values for hydroxyurea of 0.08 mM for CDP reduction, 0.13 mM for ADP reduction and 0.07 mM for GDP reduction. Guanazole, another inhibitor of ribonucleotide reductase, interacted with the enzyme in a similar manner to hydroxyurea showing an uncompetitive pattern of inhibition with CDP reduction and yielding a Ki value of 0.57 mM.Partially purified ribonucleotide reductase from hydroxyurea-resistant cells was compared to enzyme activity from wild type cells. Significant differences were observed in the hydroxyurea Ki values with the three ribonucleotide substrates that were tested. Also, CDP reductase activity from the drug-resistant cells yielded a significantly higher Ki value for guanazole inhibition than the wild type activity. The properties of partially purified ribonucleotide reductase from a somatic cell hybrid constructed from wild type and hydroxyurea-resistant cells was also examined. The Ki value for hydroxyurea inhibition of CDP reductase was intermediate between the Ki values of the parental lines and indicated a codominant expression of hydroxyurea-resistance at the enzyme level. The most logical explanation for these results is that the mutant cells contain a structurally altered ribonucleotide reductase whose activity is less sensitive to inhibition by hydroxyurea or guanazole.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 97 (1978), S. 73-85 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Hydroxyurea is an excellent selective agent for obtaining drug-resistant mutants. At a frequency of approximately 1 × 10-5 it was possible to select, in a single step, colonies that exhibited significant resistance to the cytotoxic effects of the drug. These hydroxyurea-resistant cell lines maintained their resistant phenotype after extensive cultivation in the absence of the drug. Reconstruction experiments indicated that the expression of hydroxyurea-resistance and the frequency of drug-resistant colonies was independent of cell densities up to 5 × 105 cells per 100-mm selection plate. Luria-Delbrück fluctuation analyses indicated that the appearance of hydroxyurea-resistant cells in wild type populations occurred spontaneously and at a rate of 4.8 × 10-6 per cell per generation in the presence of 0.33 mM drug. Studies with the mutagen, ethyl methane sulfonate indicated that it was capable of increasing the frequency of hydroxyurea-resistant cells by a factor of approximately 10. Also, cell-cell hybridization experiments showed that hydroxyurea-resistance behaves as a dominant or codominant trait and that hydroxyurea-resistance was a useful new genetic marker for selection of somatic cell hybrids. Furthermore, similar to many other drug-resistant cell lines hydroxyurea-resistant cells were found to exhibit an altered sensitivity to a number of non-selective agents (guanazole, N-carbamoyloxyurea, formamidoxime, and hydroxyurethane). Except for guanazole these compounds are structurally very similar to hydroxyurea and may be expected to have similar modes of action. The results presented in this paper support the view that hydroxyurea-resistance is expressed as a normal genetic trait and is a useful genetic marker for somatic cell genetic studies.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 93 (1977), S. 345-352 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: HS3, a highly phosphorylated dinucleoside originally purified from the fungus Achlya, has been isolated from Chinese hamster ovary cells undergoing glutamine starvation. The HS3 compounds obtained from the fungal and mammalian sources exhibited similar physical and chemical properties. This unusual dinucleotide may be an important regulator of eucaryotic ribonucleoside diphosphate reductase activity; for 50 μm HS3, isolated from either mammalian or fungal cells, significantly inhibited CDP reduction in Achlya or hamster cell preparations, but only marginally affected the activity of the enzyme from E. coli. Studies with HS3 isolated from Achlya and partially purified mammalian ribonucleotide reductase indicated that the compound noncompetitively inhibited the reduction of varying concentrations of the substrates CDP, ADP and GDP with Ki values of 23 μm, 14 μM and 16 μM respectively. These inhibitor concentrations are well below the estimated intracellular levels of HS3 in glutamine starved cells and suggest that HS3 inhibition of ribonucleotide reduction may be responsible for the rapid inhibition of DNA synthesis seen under these culture conditions.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Shortly after the withdrawal of L-glutamine from the growth medium of Chinese hamster ovary (CHO) cells, the rate of synthesis of a bizarre dinucleoside polyphosphate, HS3, increased by 5- to 6-fold. This elevated rate of synthesis was maintained for six hours before it gradually declined to basal level 22 hours later. The pool size of HS3 increased and decreased coincidentally with rate changes. Withdrawal of L-isoleucine did not affect HS3 biosynthesis. A glycine, adenosine, thymidine (GAT-) auxotroph of CHO cells accumulated HS3 when adenosine, not glutamine, was withdrawn. Replenishment of either glutamine (“wild type” cells) or adenosine (GAT- cells) caused an immediate depletion of HS3 intracellularly.When HS3 accumulated in CHO cells, DNA and RNA synthesis decreased and, vice versa. A similar correlation was not seen for protein synthesis. But, inhibition of protein synthesis by either puromycin or cycloheximide, and of RNA biosynthesis by actinomycin D facilitated HS3 depletion in L-glutamine starved cells.Mutant CHO cells that are deficient in purine salvage metabolism, HGPRT- (hypoxanthine-guanine phosphoribosyltransferase) failed to deplete their accumulated HS3 when fed with hypoxanthine, whereas the “wild type” CHO cells responded accordingly. The available data suggest that HS3 metabolism is connected with de novo and salvage pathways of nucleotide biosynthesis, and may play a crucial role in regulating nucleic acid metabolism in CHO cells under conditions of nutritional stress.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 57 (1995), S. 543-556 
    ISSN: 0730-2312
    Keywords: TGF-β1 ; ribonucleotide reductase ; metastasis ; aberrant regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Ribonucleotide reductase is a key rate-limiting and regulatory step in DNA synthesis and plays a crucial role in the coordination of DNA synthesis, DNA repair, and cell proliferation. The present study demonstrates a link between alterations in TGF-β1 regulation during malignant conversion and the expression of ribonucleotide reductase. H-ras-transformed mouse 10T1/2 cell lines exhibiting malignant potential were examined for possible TGF-β1-mediated alterations in ribonucleotide reductase expression. Selective induction of ribonucleotide reductase gene expression occurred, since only H-ras-transformed highly metastatic cells exhibited marked elevations in ribonucleotide reductase expression, whereas nontransformed normal 10T1/2 cells were unaffected by TGF-β1 treatment. These changes occurred without any detectable modifications in DNA synthesis rates, suggesting that these changes were regulated by a novel mechanism independent of the S-phase of the cell cycle. Furthermore, this TGF-β1-mediated regulation of ribonucleotide reductase expression was shown to occur through an autocrine mechanism. TGF-β1-modulated regulation of ribonucleotide reductase expression requires de novo protein synthesis and involves, at least in part, transcriptional and post-transcriptional events. Furthermore, evidence is presented to suggest a possible role for protein kinase C-mediated events, protein phosphatases, and G-protein-coupled events in the TGF-β1-mediated regulation of ribonucleotide reductase expression in H-ras-transformed malignant cells. TGF-β1 regulation of ribonucleotide reductase in highly malignant cells appears to be complex and multifaceted and constitutes an integral part of an altered growth regulatory program.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 60 (1996), S. 572-583 
    ISSN: 0730-2312
    Keywords: basic fibroblast growth factor ; ornithine decarboxylase ; H-ras transformed cells ; G-protein ; protein kinase C ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cell growth regulation by fibroblast growth factors (FGFs) is highly complex. The present study demonstrates a novel link between alterations in bFGF regulation during malignant conversion and the expression of ornithine decarboxylase, a key rate-limiting and regulatory activity in the biosynthesis of polyamines. H-ras transformed mouse 10T½ cell lines exhibiting increasing malignant potential were investigated for possible bFGF-mediated changes in ornithine decarboxylase gene expression. Selective induction of ornithine decarboxylase gene expression was observed, since, in contrast to nontransformed 10T½ cells and cells capable of only benign tumor formation, H-ras transformed metastatic cells exhibited marked elevations in ornithine decarboxylase message levels. Evidence for regulation of ornithine decarboxylase gene expression by bFGF at both transcription and posttranscription was found. Actinomycin D pretreatment of malignant cells prior to bFGF exposure inhibited the increase in ornithine decarboxylase message. Furthermore, striking differences in the rates of ornithine decarboxylase message decay were observed when cells treated with bFGF were compared to untreated control cells, with the half-life of ornithine decarboxylase mRNA increasing from 2.4 h in untreated cells to 12.5 h in cells exposed to bFGF. Evidence was also obtained for a cycloheximide-sensitive regulator of ornithine decarboxylase gene expression whose effect, in combination with bFGF, resulted in a further augmentation of ornithine decarboxylase gene expression. Furthermore, evidence is presented to suggest a possible role for G-protein-coupled events in the bFGF-mediated regulation of ornithine decarboxylase gene expression. The bFGF regulation of ornithine decarboxylase expression in H-ras transformed malignant cells appeared to occur independent of protein kinase C-mediated events. These results show that bFGF can modulate ornithine decarboxylase gene expression in malignant H-ras transformed cells and further suggests a mechanism of growth factor stimulation of malignant cells wherein early alterations in the regulatory control of ornithine decarboxylase gene expression are critical. © 1996 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0730-2312
    Keywords: signal transduction ; chromatin structure ; cytology ; histones ; metastasis ; Ras ; MAPKK ; NIH3T3 cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: An altered nuclear morphology has been previously noted in association with Ras activation, but little is known about the structural basis, functional significance, signaling pathway, or reproducibility of any such change. We first tested the reproducibility of Ras-associated nuclear change in a series of rodent fibroblast cell lines. After independently developing criteria for recognizing Ras-associated nuclear change in a Papanicolaou stained test cell line with an inducible H(T24)-Ras oncogene, two cytopathologists blindly and independently assessed 17 other cell lines. If the cell lines showed Ras-associated nuclear change, a rank order of increasing nuclear change was independently scored. Ras-associated nuclear changes were identified in v-Fes, v-Src, v-Mos, v-Raf, and five of five H(T24)-Ras transfectants consisting of a change from a flattened, occasionally undulating nuclear shape to a more rigid spherical shape and a change from a finely textured to a coarse heterochromatic appearance. Absent or minimal changes were scored in six control cell lines. The two cytopathologists' independent morphologic rank orders were similar (P〈 .0002). The mitogen signaling pathway per se does not appear to transduce the change since no morphologic alterations were identified in cell lines with activations of downstream components of this pathway - MAPKK or c-Myc - and the rank orders did not correlate with markers of mitotic rate (P 〉 .11). The rank order correlated closely with metastatic potential (P 〈 .0014 and P 〈 .0003) but not with histone H1 composition or global nuclease sensitivity. Based on published studies of five of the cell lines, there may be a correlation between increases in certain nuclear matrix proteins and the Ras-associated nuclear change. J. Cell. Biochem. 70:130-140, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...