Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 203-213 
    ISSN: 0730-2312
    Keywords: histone acetylation and phosphorylation ; coactivators ; corepressors ; transcriptional activation and repression ; histone acetyltransferase ; histone deacetylase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Histone acetylation and phosphorylation destablizes nucleosome and chromatin structure. Relaxation of the chromatin fiber facilitates transcription. Coactivator complexes with histone acetyltransferase activity are recruited by transcription factors bound to enhancers or promoters. The recruited histone acetyltransferases may acetylate histone or nonhistone chromosomal proteins, resulting in the relaxation of chromatin structure. Alternatively, repressors recruit corepressor complexes with histone deacetylase activity, leading to condensation of chromatin.This review highlights the recent advances made in our understanding of the roles of histone acetyltransferases, histone deacetylases, histone kinases, and protein phosphatases in transcriptional activation and repression. Exciting reports revealing mechanistic connections between histone modifying activities and the RNA polymerase II machinery, the coupling of histone deacetylation and DNA methylation, the possible involvement of histone deacetylases in the organization of nuclear DNA, and the role of chromatin modulators in oncogenesis are discussed. J. Cell. Biochem. Suppls. 30/31:203-213, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: signal transduction ; chromatin structure ; cytology ; histones ; metastasis ; Ras ; MAPKK ; NIH3T3 cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: An altered nuclear morphology has been previously noted in association with Ras activation, but little is known about the structural basis, functional significance, signaling pathway, or reproducibility of any such change. We first tested the reproducibility of Ras-associated nuclear change in a series of rodent fibroblast cell lines. After independently developing criteria for recognizing Ras-associated nuclear change in a Papanicolaou stained test cell line with an inducible H(T24)-Ras oncogene, two cytopathologists blindly and independently assessed 17 other cell lines. If the cell lines showed Ras-associated nuclear change, a rank order of increasing nuclear change was independently scored. Ras-associated nuclear changes were identified in v-Fes, v-Src, v-Mos, v-Raf, and five of five H(T24)-Ras transfectants consisting of a change from a flattened, occasionally undulating nuclear shape to a more rigid spherical shape and a change from a finely textured to a coarse heterochromatic appearance. Absent or minimal changes were scored in six control cell lines. The two cytopathologists' independent morphologic rank orders were similar (P〈 .0002). The mitogen signaling pathway per se does not appear to transduce the change since no morphologic alterations were identified in cell lines with activations of downstream components of this pathway - MAPKK or c-Myc - and the rank orders did not correlate with markers of mitotic rate (P 〉 .11). The rank order correlated closely with metastatic potential (P 〈 .0014 and P 〈 .0003) but not with histone H1 composition or global nuclease sensitivity. Based on published studies of five of the cell lines, there may be a correlation between increases in certain nuclear matrix proteins and the Ras-associated nuclear change. J. Cell. Biochem. 70:130-140, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...