Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 28 (1994), S. 265-277 
    ISSN: 0886-1544
    Keywords: intermediate filament proteins ; vimentin ; domain function ; filament assembly ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Although the head and rod domains of intermediate filament (IF) proteins are known to play significant roles in filament assembly, the role of the tail domain in this function is unclear and the available information supports contradictory conclusions. We examined this question by comparing transfection of the same cDNA constructs, encoding vimentins with modified tail domains, into cell lines that do and do not contain endogenous IF proteins. By this approach, we were able to distinguish between the ability of a mutant IF protein to initiate assembly de novo, from that of incorporating into existing filament networks. Vimentins with modifications at or near a highly conserved tripeptide, arg-asp-gly (RDG), of the tail domain incorporated into existing IF networks in vimentin-expressing (vim+) cells, but were assembly-incompetent in cells that did not express IF proteins (vim-). The failure of the RDG mutant vimentins to assemble into filament arrays in vim- cells was reversible by re-introducing a wild-type vimentin cDNA, whereupon both wild-type and mutant vimentins coassembled into one and the same IF network. We conclude that the function of the tail domain of type III IF proteins, and possibly of keratins K8 and K18, in IF assembly is distinct from those of other domains; a region encompassing the RDG tripeptide appears to be important in the assembly process. © 1994 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 75 (1970), S. 121-127 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In total absence of Na+ some identified neurons of Aplysia, after a period of silence, resume pacemaker discharge in the normal pattern with normal action potentials, while other identified neurons remain silent. In absence of Ca++ all pacemaker neurons increase spontaneous discharge and develop abnormal bursting patterns. Those neurons which discharge spontaneously in Na+ free solutions show much less dependence on Na+ and much greater dependence on Ca++ for action potentials initiated by electrical stimulation than do those neurons which do not fire spontaneously in absence of Na+. In absence of both Na+ and Ca++ all neurons become inexcitable, but much more rapidly at higher temperatures.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 84 (1974), S. 463-471 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The discharge of Aplysia pacemaker neurons varies with temperature over the range 10 to 22°C. Three types of frequency-temperature plots are found, with maximal discharge at lowest, intermediate or highest temperatures. In the presence of ouabain, however, all cells show maximal discharge at the highest temperature, suggesting that the steady state activity of an electrogenic sodium pump is an important determinant of membrane excitability. The average magnitude of pump current, as indicated by the applied current necessary to restore discharge to control values after ouabain application, was about 4 namps at 20°C but near zero at 10°C. These neurons may be excellent models of mammalian thermoreceotprs.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...