Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 455 (1985), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 19 (1991), S. 109-120 
    ISSN: 0886-1544
    Keywords: intermediate filaments ; vimentin ; myogenesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Desmin and vimentin are two type III intermediate filament (IF) proteins, which can be phosphorylated in vitro by cAMP-dependent kinase (kinase A) and protein kinase C, and the in vitro phosphorylation of these proteins appears to favor the disassembled state. The sites of phosphorylation for desmin and vimentin have been mapped to their amino-terminal headpiece domains; in chicken smooth muscle desmin the most kinase A-reactive residues are ser-29 and ser-35. In this study we have examined the phosphorylation of desmin by the catalytic subunit of kinase A by using anti-peptide antibodies directed against residues 26-36. The antibodies, which we call anti-D26, recognize both native and denatured desmin and can discriminate between intact desmin and those derivatives that do not possess residues 26-36. Pre-incubation of desmin with affinity purified anti-D26 blocks total kinase A catalyzed incorporation of 32P into desmin by 75-80%. When antibody-treated IFs are subjected to phosphorylation, no filament breakdown is observed after 3 hours. Thus anti-D26 antibodies block phosphorylation of IF in vitro. We have also explored the role of desmin phosphorylation in skeletal muscle cell differentiation using these antibodies. Quail embryo cells, induced to differentiate along the myogenic pathway by infection with avian SKV retroviruses expressing the ski oncogene, were microinjected with affinity purified anti-D26 at the mononucleated, myoblast stage. By 24 h post-injection, the vast majority of uninjected cells had fused into multinucleated myotubes, but all microinjected cells were arrested in the process of incorporating into myotubes and remained mononucleated. This observation suggests that kinase A phosphorylation-induced dynamic behavior of the desmin/vimentin IF cytoskeleton may be one of the many cytoskeletal restructuring events that must take place during myoblast fusion.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 28 (1994), S. 265-277 
    ISSN: 0886-1544
    Keywords: intermediate filament proteins ; vimentin ; domain function ; filament assembly ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Although the head and rod domains of intermediate filament (IF) proteins are known to play significant roles in filament assembly, the role of the tail domain in this function is unclear and the available information supports contradictory conclusions. We examined this question by comparing transfection of the same cDNA constructs, encoding vimentins with modified tail domains, into cell lines that do and do not contain endogenous IF proteins. By this approach, we were able to distinguish between the ability of a mutant IF protein to initiate assembly de novo, from that of incorporating into existing filament networks. Vimentins with modifications at or near a highly conserved tripeptide, arg-asp-gly (RDG), of the tail domain incorporated into existing IF networks in vimentin-expressing (vim+) cells, but were assembly-incompetent in cells that did not express IF proteins (vim-). The failure of the RDG mutant vimentins to assemble into filament arrays in vim- cells was reversible by re-introducing a wild-type vimentin cDNA, whereupon both wild-type and mutant vimentins coassembled into one and the same IF network. We conclude that the function of the tail domain of type III IF proteins, and possibly of keratins K8 and K18, in IF assembly is distinct from those of other domains; a region encompassing the RDG tripeptide appears to be important in the assembly process. © 1994 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...