Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Key words Isolated renal proximal tubule ; Metabolic substrates ; Na/K pump ; Amiloride-inhibitable K+ conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Isolated microperfused rabbit renal proximal tubule S2 segments, if incubated in conventional substrate containing HCO3 –Ringer solution, exhibit lower cell membrane potentials (V b) and elevated intracellular Na+ concentrations ([Na]i) compared to rat tubules in vivo. Assuming that these and other differences reflect insufficient metabolic and/or hormonal stimulation of the cells, we have used microelectrode techniques to test whether improving substrate supply and applying norepinephrine (NE, to compensate for the missing nerve supply) reverts V b and [Na]i to values observed in vivo. Application of D-glucose (5.5 mmol/l) and additional application of pyruvate, lactate, or L-alanine (each 10 mmol/l), or bathing the tubules in Dulbecco’s modified Eagle’s tissue culture medium (DMEM) significantly increased V b and, whenever tested, reduced [Na]i as compared to substrate-free or D-glucose-containing control solution and these effects could be prevented – as tested in the case of pyruvate – by inhibition of the Na/K pump with ouabain. However, high concentrations of acetate, β-hydroxybutyrate, or L-glutamine had no significant effect. The largest effect was obtained with joint application of DMEM and NE (10 μmol/l) which increased V b from –42.8 ± 1.3 mV (SEM) to –55.3 ± 2.5 mV (n = 11). Interestingly we noticed that under the latter conditions the V b response to bath application of 1 mmol/l amiloride virtually disappeared, i.e. it changed from a depolarization of +14.6 ± 1.4 mV (in D-glucose Ringer solution) to +0.6 ± 0.7 mV (in DMEM plus NE) (n = 8), with some tubules showing even a small hyperpolarization. The latter implies partial restoration of the in vivo behaviour, since in experiments on rat proximal tubules in vivo amiloride regularly hyperpolarized the cells (by –3.4 ± 0.76 mV, n = 5). Obviously under conventional in vitro conditions an amiloride-inhibitable K+ conductance is activated which is inactive in vivo and also inactivates under improved conditions in vitro. In agreement with observations reported in the subsequent publication our results demonstrate that isolated proximal tubules undergo functional alterations which may be largely prevented by improved metabolic and stimulatory incubation conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Rabbit renal proximal tubule ; S3 segment ; Basolateral cell membrane-Cl−/HCO3 − exchange ; Cell buffer capacity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Isolated microperfused S3 segments of rabbit renal proximal tubule were investigated with pH-sensitive double-barrelled intracellular microelectrodes to determine whether the Cl−/base exchanger, which we have previously identified in the basolateral cell membrane of this segment requires HCO3 − or can also work in CO2/HCO3 − free conditions. Cell pH (pHi) was measured in response to sudden substitution of bath Cl− by gluconate. In control solutions containing 25 mmol/l HCO3 pHi increased initially by 5.0±0.3 × 10−3 unit/s but after perfusion with CO2/HCO3 −-free solutions pHi of the same cells increased only by 1.3±0.2 × 10−3 unit/s in response to Cl− substitution. From measurements of the cellular buffering power it was calculated that the control base flux had fallen drastically from 3.7±0.3 to 0.3±0.1 × 10−12 mols/s·cm tubule length. To test whether the remaining flux might have resulted from metabolic CO2, oxidative metabolism was poisoned with cyanide (5 mmol/l). This abolished the pH change (ΔpHi) in CO2/HCO3 −-free solutions, but did not affect the pH shift in the presence of HCO3 −. The data indicate that basolateral Cl−/base exchange in S3 segment requires HCO3 − to operate. A model in which HCO3 − absorption proceeds in form of OH− and CO2 can be largely excluded.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...