Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 131 (1986), S. 211-223 
    ISSN: 1615-6102
    Keywords: Bud formation ; Cytokinin ; Funaria ; Morphometry ; Polarity ; Tip growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cytokinin stimulates caulonemata ofFunaria to undergo an asymmetric division leading to the gametophore. The earliest detectable event is a small protuberance at the distal portion of the cell accompanied by the reorganization of the underlying organelles into a polarized distribution reminiscent of a tip growing cell. Dictyosomes and associated vesicles accumulate in the protuberance directly beneath the plasma membrane with mitochondria subjacent to the vesicular layer. Endoplasmic reticulum lies beneath the mitochondrial zone directly above the large central vacuole, while chloroplasts are outside the bud. As development continues the bud elongates causing the outer cell wall to exfoliate. During the above events the nucleus migrates toward the bud site concomitant with an increase in the number of microtubules between the nucleus and the base of the outgrowth. Nucleoli, extruded from the nucleus during a previous division, persist as diffuse fragments within the protuberance. Upon reaching the bud site, division occurs with the developing phragmoplast being initiated distal to the caulonema tip cell. The former polarized distribution of the cytoplasm is altered as mitochondria, chloroplasts and small vacuoles become evenly dispersed throughout the cytoplasm; dicytosomes and endoplasmic reticulum occupy a cortical position. These events indicate a change from 2-D tip growth to 3-D diffuse growth. To quantify the ultrastructural changes associated with bud formation we performed a morphometric analysis of cells in various stages of budding. The relative volumes of dictyosomes and vesicles adjacent to the bud apex decrease during bud development coincident with an increase in these organelles in lower portions of the cytoplasm. Mitochondria and chloroplasts follow this same pattern although their highest relative volumes initially are 4 μm from the bud apex and outside the bud site, respectively. These data, as well as density profile topographic maps for vesicle fractions, support the contention that cytokinin induces a change in morphological symmetry and polarity in the fine structure ofFunaria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 201 (1998), S. 158-171 
    ISSN: 1615-6102
    Keywords: Accessible volume ; Calmodulin ; Cell division ; Fixation ; Fluorescent-analog cytochemistry ; Tradescantia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Because the activity of calmodulin (CaM) may be dependent upon its structural distribution, we have examined its spatial localization in living cells. We have focused on cell division and cell plate formation, where conventional immunofluorescence studies report that CaM is specifically associated with microtubules (MTs) of the spindle and the phragmoplast. In dividing stamen hair cells ofTradescantia virginiana that were injected with fluorescently labeled CaM and examined by confocal laser scanning microscopy (CLSM), we found that the labeled protein is uniformly distributed throughout the cell and is not localized with the phragmoplast MTs or any other obvious structure. To explore why these images from live cells differ from those prepared by immunolabeling, we investigated the fate of CaM during fixation and compared it with the localization of fixable dextran and tubulin. The results show that fixation causes severe changes in cell morphology and in the distribution of CaM and dextran in three quarters of the cells. Conversely, injected rhodamine-tubulin did not show redistribution after fixation. We conclude that in the live cell, CaM is largely uniformly distributed throughout the cytoplasm, and secondly that conventional chemical fixation does not preserve CaM, and probably many other soluble proteins, in its in vivo distribution. The role postulated for CaM in mitosis, solely based on indirect immunofluorescence microscopy, has to be re-evaluated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 169 (1992), S. 168-178 
    ISSN: 1615-6102
    Keywords: Cortical ultrastructure ; Cytoskeleton ; Freeze-substitution ; Endoplasmic reticulum ; Funaria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ultrastructural organization of the cortical cytoplasm has been examined in caulonemata, branches and buds of the mossFunaria hygrometrica, which were prepared by rapid freeze-fixation and freeze-substitution (FS). The same structural components occur in the cortex of all three cell types: microtubules (MTs), endoplasmic reticulum (ER), coated and uncoated vesicles, coated pits, and dictyosomes. However, the configuration and density of the cortical ER varies between the three. Caulonemata have an open, polygonal network of ER associated with long MTs oriented mostly parallel to the length of the cell. Lamellar ER, covered with polysomes, is interspersed in the network. Branches have a more tightly arranged ER network, at places occurring in a thick layer, and occasional polysome-decorated lamellae. MTs, which extend to the tip of the branch, are oriented mainly parallel to the cell's long axis and are associated with the cortical ER. Buds have the tightest ER network, which is frequently arranged in a thick layer. Tubules in the polygonal ER of buds are densely covered with ribosomes, whereas tubules in the ER network of caulonemata and branches range from nearly smooth to moderately rough. Closely-spaced ER lamellae, with many polysomes, occur in some buds. The MTs of buds extend into the apical dome and are associated with the cortical ER, but are more randomly oriented than in caulonemata or branches. Close appositions between the ER and PM are observed in all three cells, but are more frequent in buds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1615-6102
    Keywords: Nucleus ; Cell division ; p9 CksHs1 ; p9 CksHs2 ; p13 suc1 ; Tradescantia Virginiana
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The two human homologues of the fission yeast cell cycle protein p13 suc1 displayed structural characteristics consistent with their existing in solution as differently folded monomers despite 81% identity with respect to their primary structures and both being capable of fulfilling the functions of their homologues in fission and budding yeasts. Carboxyfluorescein-labelled p9 CksHs1 and p9 CksHs2 retained their native structures. When microinjected into live stamen hair cells ofTradescantia virginiana, the labelled proteins accumulated in the nuclei of the cells. Markedly different nuclearaccumulation kinetics indicated that the human proteins interact differently with other cellular constituents, which supports the proposition that they may have different roles in cellular regulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...