Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cerebellum  (18)
  • Granule cells  (3)
  • Cerebellar cortex  (1)
  • Cerebellar nuclei  (1)
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 2 (1966), S. 18-34 
    ISSN: 1432-1106
    Keywords: Cerebellum ; Parallel fibres ; Basket cells ; Purkinje cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Stimulation through concentric electrodes on the surface of a wide cerebellar folium was employed to set up a parallel fibre volley or beam. Serial recording of the field potential was made over a range of depths along microelectrode tracks arranged in a transverse plane across the folium in order to discover the action on Purkinje cells, both those that were on-beam for the parallel fibre volley and those at various distances off-beam. A juxta-fastigial electrode was carefully placed so that an applied stimulus could excite the axons of Purkinje cells distributed across the folium under investigation, the antidromic propagation of impulses thus obtained being utilized to test the effect of parallel fibre volleys upon Purkinje cells. 2. The observations were in accord with the two actions that a parallel fibre volley would be expected to exert on Purkinje cells: a direct excitatory action by the synapses made by parallel fibres with the spines of the Purkinje cell dendrites; an inhibitory action mediated by the stellate and basket cells that themselves are directly excited by the parallel fibre volley. 3. The excitatory synaptic action would result in the two types of responses that were restricted to the narrow zone and superficial location of the parallel fibre volley: active sinks formed by this excitatory synaptic action on the superficial dendrites of Purkinje cells would account for the observed depth profile of extra-cellular slow potentials, a superficial negative wave reversing to a deeper positive wave formed by passive sources on deeper dendrites; superficial synaptic excitation would also account for the facilitation of the propagation of antidromic impulses into the superficial dendrites. 4. The inhibitory synaptic action would result in the two types of responses that were widely dispersed transversely and in depth, far beyond the traject of the parallel fibre volley: a slow positive potential wave with a maximum at a depth usually of 300–400 μ; an inhibitory action on the antidromic invasion of Purkinje cells. The transverse profiles of these two presumed indices of inhibitory action on Purkinje cells apparently revealed that a basket cell may give inhibitory synapses up to 1000 μ laterally from the location of its soma and dendrites. 5. A description is given of the variants in the transverse profiles of the deeper positive waves and of inhibitory actions of a parallel fibre volley that presumably are mediated by basket cells and also by the superficial stellate cells. These physiological findings are correlated with the histologically determined distribution of synapses from a basket cell onto Purkinje cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 1 (1966), S. 1-16 
    ISSN: 1432-1106
    Keywords: Inhibitory interneurones ; Cerebellum ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Extracellular microelectrode recording has been employed to study the responses of three types of interneurones in the cat cerebellar cortex: basket cells, superficial stellate cells and Golgi cells. The large unitary spike potentials of single cells were sharply localized and presumably were generated by impulse discharges from the cell somata. The characteristics of their responses described below sharply distinguished them from Purkinje cells. 2. The parallel fibre volleys generated by surface stimulation of a folium evoked brief repetitive discharges that were graded in respect of frequency and number. Maximum responses had as many as 10 impulses at an initial frequency of 500/sec. 3. At brief test intervals there was facilitation of the response to a second parallel fibre volley; at about 50 msec it passed over to depression for over 500 msec. 4. Stimulation deep in the cerebellum in the region of the fastigial nucleus (juxta-fastigial, J.F.) evoked by synaptic action a single or double discharge, presumably by the mossy fibre-granule cell-parallel fibre path, but climbing fibre stimulation from the inferior olive also usually had a weak excitatory action evoking never more than one impulse. 5. J.F. stimulation also had an inhibitory action on the repetitive discharge evoked by a parallel fibre volley. Possibly this is due to the inhibitory action of impulses in Purkinje cell axon collaterals. 6. There was a slow (7–30/sec) and rather irregular background discharge from all interneurones. The inhibitory actions of parallel fibre and J.F. stimulation silenced this discharge for some hundreds of milliseconds, probably by Golgi cell inhibition of a background mossy fibre input into granule cells. 7. All these various features were displayed by cells at depths from 180 to 500 μ; hence it was concluded that superficial stellate, basket and Golgi cells have similar properties, discrimination being possible only by depth, the respective depth ranges being superficial to 250μ, 250μ to 400μ, and deeper than 400μ.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 1 (1966), S. 17-39 
    ISSN: 1432-1106
    Keywords: Parallel fibres ; Purkinje cells ; Cerebellum ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. When electrical stimuli were applied to the surface of a cerebellar folium by a local electrode (LOC), there was a propagated potential wave along the folium with a triphasic (positive-negative-positive) configuration. 2. Investigations by microelectrode recording established that this wave is produced by impulses propagating for at least 3 mm and at about 0.3 m/sec along a narrow superficial band or “beam” of parallel fibres. As expected from this interpretation, there was an absolutely refractory period of less than 1 msec and impulse annihilation by collision. 3. Complications occurred from the potential wave forms resulting from the excitation of mossy fibres by spreading of the applied LOC stimulus. These complications have been eliminated by chronically deafferenting the cerebellum. 4. When recording within the beam of excited parallel fibres there was a slow negative wave of about 20 msec duration, and deep and lateral thereto, there was a slow positive wave of approximately the same time course. 5. These potential fields were expressed in serial profile plots and in potential contour diagrams and shown to be explicable by the excitatory and inhibitory synaptic action on Purkinje cells: excitatory depolarizing synapses of parallel fibre impulses on the dendrites; and hyperpolarizing inhibitory synapses of stellate and basket cells respectively on the dendrites and somata. The active excitatory synapses would be strictly on the parallel fibre beam and the inhibitory concentrated deep and lateral thereto, which is in conformity with the axonal distributions of those basket and stellate cells that would be excited by the parallel fibre beam. 6. Complex problems were involved in interpretation of slow potentials produced by a second LOC stimulus at brief stimulus intervals and up to 50 msec: there was a potentiation of the slow negative wave, and often depression of the positive wave deep and lateral to the excited beam of parallel fibres. 7. Often the LOC stimulus evoked impulse discharge from the Purkinje cells, these discharges being inhibited by a preceding LOC stimulus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 1 (1966), S. 82-101 
    ISSN: 1432-1106
    Keywords: Cerebellum ; Mossy fibre input ; olgi cell inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The glomerulus in the cerebellar granular layer is composed of the three elements; the mossy fibre terminal, the granule cell dendrites and the Golgi cell axons. The afferent input to the cerebellar cortex through the glomerulus, the mossy fibre-granule cell relay (M.G.R.), and its inhibitory control by the Golgi cells were studied by recording, a) extracellular field potentials in the granular and molecular layers, b) unitary spikes of granule cells, and c) intracellular postsynaptic potentials in Purkinje cells. 2. Mossy fibres were activated by juxta-fastigial, transfolial, lateral cuneate nucleus and radial nerve stimulation. Stimulation of an adjacent folium (transfolial stimulation) could excite branches of mossy fibres under the stimulating electrode which supply other branches also to the folium under the recording electrode. This technique was utilized to distinguish the response due to mossy fibre activation from those due to the climbing fibre and Purkinje cell axons. 3. These stimulations resulted in, through the M.G.R., a powerful activation of granule cells whose axons (parallel fibres) excited in turn the Purkinje cells and the inhibitory interneurones, including the Golgi cells, in the molecular layer. 4. Field potentials and unitary spikes due to granule cell activity elicited by the stimulation of mossy fibres were markedly depressed for hundreds of milliseconds after the direct stimulation of parallel fibres (LOC stimulation). The postsynaptic potential in Purkinje cells evoked by mossy fibre activation was also depressed by the conditioning LOC stimulation in the same manner. The “spontaneous” background activities recorded from granule cells as unitary spikes and from Purkinje cells as inhibitory synaptic noise were silenced for hundreds of milliseconds after the LOC stimulation. 5. These depressions indicate that the parallel fibre activation evokes an inhibitory action upon M.G.R. On anatomical grounds this inhibition can be mediated only by the Golgi cell, and it is postulated that the inhibitory action is postsynaptic upon the dendrites of granule cells. 6. It is concluded that the Golgi cell inhibition regulates the mossy fibre input to the cerebellar cortex at the M.G.R. by a form of negative feed-back.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 1 (1966), S. 161-183 
    ISSN: 1432-1106
    Keywords: Cerebellum ; Purkinje cells ; Intracellular recording ; Postsynaptic potentials
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Intracellular recording from Purkinje cells has been employed in investigating the excitatory and inhibitory synaptic action that is exerted on these cells by the mossy fibre input into the cerebellum. 2. These synaptic actions are evoked not directly by the mossy fibres, but probably always through granule cells and their axons, the parallel fibres. The intracellular records conform with the anatomical evidence that the parallel fibres directly exert a powerful synaptic excitatory action on Purkinje cells, and that the inhibitory pathway occurs via an inhibitory interneurone — a basket cell or a stellate cell. Direct stimulation of parallel fibres gives intracellular potentials closely resembling those produced by deep stimulation of mossy fibres. 3. As would be expected, direct stimulation of parallel fibres produces an EPSP with a latency 1 to 2 msec briefer than the IPSP. The IPSP has a duration usually in excess of 100 msec. The EPSP appears to be briefer, though its superposition on the IPSP greatly reduces its apparent duration. Neutralization of the IPSP by appropriate membrane polarization or by intracellular chloride injection reveals an EPSP duration of up to 50 msec. 4. The IPSP is typically affected by polarizing currents; reduced and even inverted by hyperpolarizing currents, and increased by depolarizing currents. The IPSP is converted to a depolarizing response by excess of intracellular chloride. It must therefore be generated by an increased ionic permeability of the inhibitory subsynaptic membrane, chloride ions being importantly concerned. 5. Often small irregular IPSPs can be observed occurring spontaneously, and they react to polarizing currents and to chloride injections in a manner identical to the evoked IPSPs. It is concluded that they are generated by the spontaneous discharges of basket cells. 6. A brief account is given of various spontaneous rhythmic responses of impaled Purkinje cells, and of the effect of synaptic inhibitory action upon them. 7. There is a general discussion of these findings in relation to the various neural pathways and neural mechanisms that have been postulated in the light of the preceding investigations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1432-1106
    Keywords: Cerebellum ; Cutaneous mechanoreceptors ; Climbing fibers ; Purkyně cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary An account is given of single Purkyně cell responses that are evoked by cutaneous mechanoreceptors acting via climbing fibers (CF). There was no complication by mossy fiber input, which was selectively depressed by light pentothal anesthesia. Brief mechanical pulses (taps) to the footpads and air jets on hairy skin were very effective in evoking CF responses, the usual range of latencies being 25–35 msec for the hindfoot and 19–30 msec for the forefoot. There was often a considerable difference in the effectiveness of the different pads of the same foot. For any particular Purkyně cell there was a close correspondence between the receptive fields for footpads and hairy skin. The threshold was often below 0.02 mm taps for the most sensitive pads, and was even lower for more prolonged mechanical displacements. Mechanical pulses of 80 to several hundred msec in duration were effective in evoking CF responses of Purkyně cells at “off” as well as at “on.” This finding and the very low threshold strongly suggest Pacinian corpuscles as the principal receptors concerned in activating the CF system. Repetitive taps to footpads were effective at slow frequencies, 5 or 10 Hz, but there was a response only to the first tap with a frequency of 65 Hz.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-1106
    Keywords: Cerebellum ; Cutaneous mechanoreceptors ; Mossy fibers ; Climbing fibers ; Integration ; Purkyně cell groups
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The preceding two papers gave accounts of mossy fiber (MF) or of climbing fiber (CF) inputs to Purkyně cells under conditions where the other input was depressed by the experimental procedure. By utilizing either chloralose anesthesia or decerebration with sparing of the pyramidal tracts it has been possible to study the convergence of MF and CF inputs onto single Purkyně cells. The stimulation of cutaneous mechanoreceptors, the recording procedures for unitary Purkyně cell discharges and the computer averaging techniques were as previously described. Testing by taps to the footpads evoked a combined MF and CF response more commonly than either response alone, and often both inputs were very effective. There was a tendency for such phasic CF responses to be more frequently observed than the tonic responses to pad pressure, but such responses did occur. Purkyně cells were located by the usual procedure along the microelectrode tracks later identified in serial sections. Those cells activated by the fast MF inputs from the pad receptors were found to be closely associated in groups or colonies. The delayed MF inputs probably via spino-reticular pathways were more widely dispersed. The topographical relationships of these colonies are displayed on maps of the unfolded cerebellar cortex for lobules II to VI of both vermis and pars intermedia. In general these distributions of Purkyně cells activated from forefoot and hindfoot appear as islands in the larger fields that degeneration procedures exhibit for the cuneocerebellar and dorsal spinocerebellar tracts respectively. The CF inputs from the footpads also project to these same colonies, so that there are conjoint MF and CF colonies. The several modalities of the cutaneous mechanoreceptors of the forefoot or hindfoot often participate in the receptive fields of individual Purkyně cells. Such a field may be restricted to one or other side of the foot, all tested cutaneous mechanoreceptors then sharing approximately in the same restriction. Finally it is shown how these experimental findings relate to the theories of cerebellar function, particularly to the dynamic loop hypothesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1432-1106
    Keywords: Cerebellum ; Purkyně cell discharges ; Mossy fibers ; Climbing fibers ; Afferent volleys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Impulses discharged by Purkyně cells provide the only output from the cerebellar cortex. Usually the Purkyně cells can be identified with certainty because they alone respond by the brief bursting discharge generated by climbing fiber (CF) impulses, as well as by the ubiquitous simple spikes. The discharges from single Purkyně cells in the anterior lobe have been studied in lightly anesthetized and in decerebrate unanesthetized cats. All of our 275 identified cells had an average background discharge frequency in the range of 5/sec to 100/sec. The discharge was increased and/or depressed by afferent volleys from a number of limb nerves. In addition there was usually a slow rate of CF-evoked spike bursts at 0.5–2/sec, and many afferent inputs also evoked CF responses. The firing patterns of Purkyně cells are often very irregular, but by the technique of computer averaging of many sweeps, usually 128, the responses of the cell under observation have been accurately and reliably displayed as post-stimulus time histograms and their cumulative frequency distributions. In this manner the distinctive features of the responses evoked by the mossy fiber and climbing fiber inputs have been determined under a wide variety of conditions. The most direct mossy fiber responses — excitatory or inhibitory — had a shorter latency than the climbing fiber responses, usually by more than 10 msec. However, there were also later responses to both types of input. Repetitive afferent volleys were used to study facilitation of the mossy fiber responses at short intervals, and the effectiveness of repetition on both kinds of inputs at slower frequencies. Repetitive mossy fiber inputs apparently can give a maintained enhancement or depression of the Purkyně cell discharge.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1432-1106
    Keywords: Cerebellum ; Cutaneous mechanoreceptors ; Mossy fibers ; Purkyně cells ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This paper gives an account of single Purkyně cell responses when three types of mechanical stimulation, as in the previous paper, are applied to the forefoot and hindfoot of the decerebrate unanesthetized cat. Attention was concentrated on the effects of brief mechanical pulses to the footpad. Recording was extracellular by glass microelectrodes and special precautions were taken in identifying the spike responses as being due to a single Purkyně cell and in securing its effective isolation for our computer averaging techniques, as described in the previous papers. All Purkyně cells were in the ipsilateral anterior lobe in the lateral vermis or pars intermedia of lobules III, IV, V, except for a few recordings in the extreme rostral zone of lobule VI. Mechanical pulses or taps evoked responses from many Purkyně cells which were pure excitatory, pure inhibitory or admixtures thereof. The latencies of onset were usually in the range of 12–20 msec from the onset of the tap, which tends to be a little longer than the observed latencies for mossy fiber responses described in the preceding paper. There was often a considerable difference in the sizes of the responses evoked from different pads of the same foot, and the usual threshold for response was below 0.2 mm amplitude. Durations of responses were usually 10–20 msec for excitation and 50–100 msec for inhibition. Pressure pulses to the central foot pads of 2 sec duration evoked a wide variety of responses: brief phasic at “on” and “off” that could be admixtures of excitation and inhibition; almost pure tonic excitations or inhibitions that were well maintained during the 2 sec; phasic-tonic responses in various relative degrees. Usually 500 g was maximally effective and the threshold was below 100 g. Hair receptors were stimulated preferentially by brief air jets, there being brief excitatory or inhibitory responses much as with taps, but with rather longer latency. The effective area was usually fairly extensive over the hairy skin of the foot. In general the effects on Purkyně cells by cutaneous mechanoreceptors acting via mossy fibers were in accord with the mossy fiber responses reported in the preceding paper and with the well-known excitatory and inhibitory effects that are exerted by mossy fiber inputs on Purkyně cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1432-1106
    Keywords: Cerebellum ; Mossy fibers ; Granule cells ; Afferent volleys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This paper is the first of a series in which the processing of information in the cerebellum has been studied by investigating the effects that known inputs from limb nerves produce on the unitary spike potentials in the cerebellar cortex. These spikes have been recorded extracellularly at all depths along microelectrode tracks in the 5th, 4th and 3rd lobules of the anterior lobe in the lateral vermis or in the pars intermedia. These units have a background frequency of discharge, often very irregular, and computer averaging techniques have been employed in order to derive reliable information on the time course and intensity of the excitatory and/or inhibitory actions produced by the input against this background. Most of the spike responses recorded from the granular layer fall into two classes, one characteristic of impulses in mossy fibers, and the other of impulse discharges from granule cells. Both in the spontaneous background and in the response to afferent volleys in limb nerves the mossy fibers exhibit a performance in close accord with that described for the discharges up the spino-cerebellar tracts. The short latency of 6–9 msec for hindlimb stimuli and the high frequency burst response of 2–4 impulses are characteristic. The mossy fibers displayed a wide variety of responses to the wide range of testing inputs, there being various combinations of excitatory and inhibitory responses and also delayed excitatory actions, all of which must be assumed to be reflections of synaptic influences on the cells of origin of the mossy fibers in the spinal cord. Granule cells have a longer latency by several milliseconds, 9–20 msec for the hindlimb, and a slower frequency in their burst response which tended to be longer and more irregular. The small unitary spike potentials are more difficult to isolate. Also with repetitive stimulation granule cells are more readily depressed than are mossy fibers. Usually a granule cell exhibits a wider range of response to the various cutaneous and muscular afferents of a limb. Both mossy fibers and granule cells may display reciprocal responses to volleys from muscle nerves to antagonistic muscles. This attempt to define properties of the mossy fiber and granule cell spike potentials should help in their identification in future investigations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...