Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GABAergic neurons  (3)
  • Chandelier cells  (1)
  • 1
    ISSN: 1432-1106
    Keywords: GABAergic neurons ; Accessory optic nuclei ; Pretectal nuclei ; Gerbil ; Rat ; Visual system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The enzyme glutamic acid decarboxylase (GAD) has been localized in sections of rodent brains (gerbil, rat) using conventional immunocytochemical techniques. Our findings demonstrate that large numbers of GAD-positive neurons and axon terminals (puncta) are present in the visual relay nuclei of the pretectum and the accessory optic system. The areas of highest density of these neurons are in the nucleus of the optic tract (NOT) of the pretectum, the dorsal and lateral terminal accessory optic nuclei (DTN, LTN), the ventral and dorsal subdivisions of the medial terminal accessory optic nucleus (MTNv, MTNd), and the interstitial nucleus of the posterior fibers of the superior fasciculus (inSFp). The findings indicate that 27% of the NOT neurons are GAD-positive and that these neurons are distributed over all of the NOT except the most superficial portion of the NOT caudally. The GAD-positive neurons of the NOT are statistically smaller (65.9 μm2) than the total population of neurons of the NOT (84.3 [j,m2) but are otherwise indistinguishable in shape from the total neuron population. The other visual relay nuclei that have been analyzed (DTN, LTN, MTNv, MTNd, inSFp) are similar in that from 21% to 31% of their neurons are GAD-positive; these neurons are smaller in diameter and are more spherical than the total populations of neurons. The data further show that a large proportion of the neurons in these visual relay nuclei are contacted by GAD-positive axon terminals. It is estimated that approximately one-half of the neurons of the NOT and the terminal accessory optic nuclei receive a strong GABAergic input and have been called “GAD-recipient neurons”. Further, the morphology of the GAD-positive neurons combined with their similar distribution to the GAD-recipient neurons suggest that many of these neurons are acting as GABAergic, local circuit neurons. On the other hand, the large number of GAD-positive neurons in the NOT and MTN (20–30%) in relation to estimates of projection neurons (75%) presents the possibility that some may in fact be projection neurons. The overall findings provide morphological evidence which supports the general conclusion that GABAergic neurons play a significant role in modulating the output of the visually related NOT and terminal accessory optic nuclei.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Inhibition ; Hippocampal formation ; Development ; GABAergic neurons ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Glutamate decarboxylase (GAD)-positive and Golgi impregnated local circuit neurons of the hippocampal formation of five day old rats were examined in light and electron microscopic preparations. The ultrastructural features of these neurons were similar in both the dentate gyrus and CA1 area of Ammon's horn. Somata displayed a perikaryal cytoplasm rich in organelles but lacked organized Nissl bodies. Most nuclei showed intranuclear infoldings of varying degrees but no intranuclear sheets or rods were found. Somata and dendrites were contacted by relatively immature axon terminals that formed mainly symmetric synapses. The axons of local circuit neurons in both the dentate gyrus and Ammon's horn formed symmetric synapses with somata and dendrites of the principal neurons in these regions. Thus, both GAD-positive and Golgi-impregnated terminals of local circuit neurons were observed to form synapses with pyramidal and granule cells. These terminals were usually small and contained relatively few pleomorphic synaptic vesicles. The results show that a circuitry for inhibition is established in the 5 day old dentate gyrus and Ammon's horn, even though the local circuit neurons lack some of the typical adult ultrastructural features at this age.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Calbindin ; Parvalbumin ; Pyramidal cells ; GABAergic neurons ; Epilepsy ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Previous immunocytochemical studies have shown a heterogeneous distribution of parvalbumin (PA) and calbindin (CB) in the rat hippocampal formation. The results of the present study showed a heterogeneous distribution of PA and CB in primate Ammon's horn. The density and intensity of immunoreactivity for both of these calcium-binding proteins was greatest in CA2 as compared to CA1 and CA3. CB-immunoreactivity was localized to the cell bodies, dendrites, and axon initial segments of pyramidal cells whereas PA-immunostaining was found in the axon terminals, dendrites and cell bodies of interneurons that have features similar to GABAergic inhibitory neurons. Based on previous studies that have shown a protective role of calcium-binding proteins in neurons exposed to hyperstimulation, these results suggest that the resistance of CA2 pyramidal cells in temporal lobe epilepsy is due to the high concentration of CB and PA in this region of Ammon's horn.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Key words Neuropeptides ; Parvalbumin ; GABA ; Cerebral cortex ; Basket cells ; Chandelier cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Corticotropin releasing hormone (CRH) has been localized to interneurons of the mammalian cerebral cortex, but these neurons have not been fully characterized. The present study determined the extent of co-localization of CRH with glutamate decarboxylase (GAD) and calcium-binding proteins in the infant rat neocortex using immunocytochemistry. CRH-immunoreactive (ir) neurons were classified into two major groups. The first group was larger and consisted of densely CRH-immunostained small bipolar cells, predominantly localized to layers II and III. The second group of CRH-ir cells was lightly labeled and included multipolar neurons mainly found in deep cortical layers. Co-localization studies indicated that the vast majority of CRH-ir neurons, including both bipolar and multipolar types, was co-immunolabeled for GAD-65 and GAD-67. Most multipolar, but only some bipolar, CRH-ir neurons also contained parvalbumin, while CRH-ir neurons rarely contained calbindin or calretinin. These results indicate that virtually all CRH-ir neurons in the rat cerebral cortex are GABAergic. Furthermore, since parvalbumin is expressed by cortical basket and chandelier cells, the colocalization of CRH and parvalbumin suggests that some cortical CRH-ir neurons may belong to these two cell types.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...