Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Key words Antigen presentation ; TAP peptide transporter gene ; HLA class II ; insulin-dependent diabetes mellitus ; linkage disequilibrium.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The TAP2 gene, located in the HLA class II region, encodes a subunit of a transporter involved in the endogenous antigen-processing pathway, and has been suggested to contribute to the genetic risk for insulin-dependent diabetes (IDDM). In order to determine whether the TAP2 locus modulates the risk conferred by HLA DQ loci, HLA DQA1-DQB1-TAP2 haplotypes were analysed in 48 IDDM probands, their first degree relatives, and in 62 normal control subjects. A decreased frequency of the TAP2B allele was confirmed in this IDDM cohort (12 vs 28 % in control subjects, p c 〈 0.05). Analysis of 73 informative meiotic events in IDDM and control families demonstrated a recombination fraction between HLA DQB1 and TAP2 loci of 0.041 (Log of the odds score = 16.5; p 〈 10–8) indicating strong linkage between these loci. Family haplotype analysis demonstrated linkage disequilibrium between TAP2 and HLA DQA1-DQB1, and showed that the reduced frequency of TAP2B was associated with its absence on the IDDM susceptible DQA1*0301-DQB1*0302 haplotype, its low frequency on DQA1*0501-DQB1*0201, and the association of TAP2B with DQA1*0101-DQB1*0501 haplotypes which were less frequent in IDDM patients. Comparison of transmitted with non-transmitted haplotypes in IDDM families showed a slight but not significant decrease in TAP2B allele frequency on transmitted (3 of 37) vs non-transmitted (2 of 9) HLA DQA1*0501-DQB1*0201 haplotypes. No other differences were observed. Twenty-four unrelated DQA1*0501-DQB1*0201 haplotypes from non-diabetic families had a TAP2B allele frequency (4 %) similar to that in IDDM haplotypes. These findings suggest that the decreased TAP2B allele frequency in Italian IDDM patients is due to HLA DQ haplotype differences between IDDM patients and control subjects, and do not support a contribution to IDDM risk by the TAP2 locus. [Diabetologia (1995) 38: 968–974]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Antigen presentation ; TAP peptide transporter gene ; HLA class II ; insulin-dependent diabetes mellitus ; linkage disequilibrium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The TAP2 gene, located in the HLA class II region, encodes a subunit of a transporter involved in the endogenous antigen-processing pathway, and has been suggested to contribute to the genetic risk for insulin-dependent diabetes (IDDM). In order to determine whether the TAP2 locus modulates the risk conferred by HLA DQ loci, HLA DQA1-DQB1-TAP2 haplotypes were analysed in 48 IDDM probands, their first degree relatives, and in 62 normal control subjects. A decreased frequency of the TAP2B allele was confirmed in this IDDM cohort (12 vs 28% in control subjects, p c 〈0.05). Analysis of 73 informative meiotic events in IDDM and control families demonstrated a recombination fraction between HLA DQB1 and TAP2 loci of 0.041 (Log of the odds score=16.5; p〈10−8) indicating strong linkage between these loci. Family haplotype analysis demonstrated linkage disequilibrium between TAP2 and HLA DQA1-DQB1, and showed that the reduced frequency of TAP2B was associated with its absence on the IDDM susceptible DQA1*0301-DQB1*0302 haplotype, its low frequency on DQA1*0501-DQB1*0201, and the association of TAP2B with DQA1*0101-DQB1*0501 haplotypes which were less frequent in IDDM patients. Comparison of transmitted with non-transmitted haplotypes in IDDM families showed a slight but not significant decrease in TAP2B allele frequency on transmitted (3 of 37) vs non-transmitted (2 of 9) HLA DQA1*0501-DQB1*0201 haplotypes. No other differences were observed. Twenty-four unrelated DQA1*0501-DQB1*0201 haplotypes from non-diabetic families had a TAP2B allele frequency (4%) similar to that in IDDM haplotypes. These findings suggest that the decreased TAP2B allele frequency in Italian IDDM patients is due to HLA DQ haplotype differences between IDDM patients and control subjects, and do not support a contribution to IDDM risk by the TAP2 locus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0884-3996
    Keywords: chemiluminescence ; PCR ; contamination ; polymorphism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Minisatellite analysis is commonly used in forensic disputes but can also be applied to the investigation of cell contamination. Such a problem arises, for example, when transplantation is performed. The presence of contamination has been investigated by other authors using radioactive methods. In the present study we describe a method that allows the detection of contamination with high sensitivity without using radioactive substances. Our technique is based on the use of polymerase chain reaction (PCR) amplification of minisatellite sequences (VNTR), followed by chemiluminescent detection. In particular, biotin-labelled dCTP is included in the PCR mixture and detection of PCR products is obtained following the CSPD chemiluminescent protocol (Southern-Light Nucleic Acid Detection Systems). We applied this method to artificial mixes of DNA of two individuals with alleles of different sizes. We performed progressive dilutions of an individual DNA into the other's DNA and revealed a contamination of 1 in 2500 cells. We also tested our technique searching for maternal contamination in cord blood samples in 60 cases and revealed a 18.3% contamination. The technique that we set up proves to be a very sensitive one which could be applied not only to the detection of maternal cells in cord blood but also in studying any other kind of contamination. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...