Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (2)
  • Indium telluride, thermodynamics, vaporization chemistry  (1)
  • Key words: COAMPS, coupled model, mutual response, tropical squall line, atmosphere, ocean, heat fluxes.  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 155 (1999), S. 1-32 
    ISSN: 1420-9136
    Keywords: Key words: COAMPS, coupled model, mutual response, tropical squall line, atmosphere, ocean, heat fluxes.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) is used to investigate the mutual response of a tropical squall line and the ocean. Simulated squall line compares well with the observations, and consists of counterrotating vortices, and has a bow shape bulge toward the leading edge. In addition to these features, which are also shown in the previous numerical simulations, the unique results from the coupled simulation indicate that the air–sea interaction processes within the squall line are important. They affect both the atmosphere and the ocean locally. Simulated upper ocean displays significant response to the squall line with upwelling and baroclinicity. Depth of the ocean mixed layer in the coupled simulation becomes modified due to feedback processes. Ocean temperature acts as a destabilizing factor, and the salinity as a stabilizing factor. Surface turbulent fluxes from the coupled simulation are about 10% less than that of the uncoupled simulation. The SST in the coupled simulation decreases by about 0.21°C. Predicted squall line in the coupled simulation is weaker as compared to the uncoupled simulation. This is reflected in terms of differences in surface fluxes, cloud water, rain water and vertical velocities between the two simulations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Monatshefte für Chemie 117 (1986), S. 695-712 
    ISSN: 1434-4475
    Keywords: Indium telluride, thermodynamics, vaporization chemistry ; Torsion effusion ; Knudsen effusion ; High temperature mass spectrometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Description / Table of Contents: Zusammenfassung Die Chemie der Verdampfung von In2Te3(s) wurde mittels automatisierter gleichzeitiger Anwendung derKnudsen- und Torsions-Effusion, mittels Hochtem-peraturmassenspektrometrie und entsprechenden Hilfsmethoden untersucht. Es wird über die ersten absoluten Messungen des Dampfdrucks von In2Te3 berichtet. In2Te3(s) verdampfte inkongruent im Temperaturbereich von 701–889 K, wobei Te2(g) und eine feste Lösung mit der ZusammensetzungX In=0.42 undX Te=0.58 entstand. Die Standard-Enthalphie der Reaktion bei 298 K, ΔH° (298 K), war nach der Methode des dritten Gesetzes 136.0±0.3 kJ/mol. Die erwähnte feste Lösung verdampfte inkongruent unter Bildung von InTe(s) und einem Dampf, der aus Te2(g) und In2Te(g) bestand. InTe(s) verdampfte im Bereich von 701–887 K kongruent unter Bildung von Te2(g) und In2Te(g); ΔH v ° (298 K) nach dem dritten Gesetz war 201.5±1.0 kJ/mol. Diese Ergebnisse sind im Gegensatz zu Literaturangaben zur Verdampfung von In2Te3, wobei sowohl kongruente als auch inkongruente Verdampfung zu InTe(s) berichtet wurden. Außerdem wurde InTe(s) als inkongruent verdampfend beschrieben. Diese Abweichungen werden diskutiert.
    Notes: Abstract The vaporization chemistry of In2Te3(s) was studied by the computer-automated simultaneousKnudsen-effusion and torsion-effusion method, by high-temperature mass spectrometry, and by ancillary methods. The first absolute measurements of the vapor pressure of In2Te3 are reported. In2Te3(s) vaporized incongruently in the temperature range 701–889 K and produced Te2(g) and a solid-solution, (X In=0.42 andX Te=0.58). The standard enthalpy of the reaction at 298 K, ΔH° (298 K) by the third-law method was 136.0±0.3 kJ/mol of vapor. The above solid solution vaporized incongruently and produced InTe(s) and a vapor which consisted of Te2(g) and In2Te(g). InTe(s) vaporized congruently in the range 701–887 K and produced Te2(g) and In2Te(g); the third-law ΔH v ° (298 K) was 201.5±1.0 kJ/mol. These results were at variance with the literature on vaporization of In2Te3 where both congruent vaporization and incongruent vaporization to give InTe(s) are separately reported. Further, InTe(s) was reported to vaporize incongruently. These differences are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 49 (1993), S. 1131-1144 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The structural properties of epoxy can be retained and thermal stability improved by blending epoxy with bismaleimide (BMI) and curing them simultaneously. Depending on the curing agent, the overall viscoelastic properties of the cured material can be varied. In the present work, diaminodiphenylmethane and diaminodiphenyl sulfone have been used as curing agents to prepare blends of epoxy and BMI. The blends were characterized by DSC, TG, DMA, and SEM. Results indicate that an excellent interpenetrating network forms in both the cases and that the DDM-cured system gives better thermal stability than that of the DDS-cured system. © 1993 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An NMR. investigation of the state of formaldehyde in acidic solutions has been carried out. Solutions of DCl/D2O/CD3COOD containing two sources of formaldehyde, i.e. paraformaldehyde (I) and trioxane (II), were used for this purpose. In systems I and II the effect of various D2O/CD3COOD ratios, at a constant DCl concentration, was studied, while for II the effect of changing DCl concentration was also investigated. The results show that in aqueous solution, formaldehyde exists primarily as the monomeric and linear oligomeric forms of methylene glycol. Reducing the amount of D2O (at constant DCl concentration), while increasing the CD3COOD content, results in an increase in the polymeric species and in trioxane. In addition, substitution of water by acetic acid results in systems that are catalytically more active than aqueous solutions of the same hydrochloric acid concentration. Along with the usual polymer-monomer equilibria which exist in such solutions, side reactions of methylene glycol with the hydrochloric acid present also occur to a small extent, e.g. acetylation, substitution of OH by Cl and the Cannizzaro reaction. It is suggested that these findings will result in a better understanding of the formaldehyde crosslinking reactions in cotton cellulose.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...