Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (11)
  • Polymer and Materials Science  (6)
  • radiation  (3)
  • Strain induced crystallization  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 263 (1985), S. 109-115 
    ISSN: 1435-1536
    Keywords: Crosslinking ; radiation ; polyethylene ; density ; crystallinity ; d-spacings ; phase densities ; crosslink locations ; lateral grain boundaries ; crosslink mechanisms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Branched polyethylene irradiated (0–400 Mrad) with a Co60 source at room temperature under vacuum was studied by density, wide- and small-angle X-ray scattering (WAXS and SAXS) measurements. The radiation effects on the structure of bulk, branched polyethylene are quite similar to those observed by others on single crystals or oriented preparations. These effects include changes in bulk densityϱ, crystallinity(w c orv c) and¯d 100 and¯d 200 spacings as a function of irradiation. A decrease in crystallinity is seen to begin at radiation dose ≈100 Mrad whereas lattice expansion indicating onset of an orthorhombic-hexagonal transition can begin as low as 10 Mrads. The decrease in crystallinity can be attributed to additional lattice distortions primarily introduced by the crosslinks occurring at the lateral grain boundaries, while lattice expansion can be associated with the same crosslinking mechanism which begins at the defects both within the crystals as well as those outside the crystals at the lateral grain boundaries. Strong evidence for a primary crosslinking-at-the-defects mechanism has also come fromϱ c andϱ a data obtained in this study as a function of radiation dose. The same data have also led to an excellent correspondence between the measured density crystallinityv c and the measured WAXS crystallinityw c. Without consideration of the effects of crosslinks onϱ c andϱ a one would have obtained a divergence of the two crystallinities, especially at radiation doses greater than 100 Mrads.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 263 (1985), S. 313-321 
    ISSN: 1435-1536
    Keywords: Strain induced crystallization ; van der Waals network ; eutectoid copolymer ; maximum melting temperature ; degree of crystallinity ; crystal size
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A theory of strain-crystallization of random networks comprised of stereoregular chains is developed. The crosslinks are assumed to be expelled from crystal cores. For this reason, the rubber is considered to be represented as a random eutectoid copolymer, the thermodynamics of strain crystallisation of which is described by the use of the van der Waals model of networks. The strain dependence of the maximum melting temperatures, the degree of crystallinity and the average thickness of the crystallites calculated are shown to be in fair accord with experimental data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 269 (1991), S. 469-476 
    ISSN: 1435-1536
    Keywords: Crosslinking ; radiation ; polyethylene ; density ; crystallinity ; d-spacings ; phase densities ; crosslink locations and mechanisms ; defects ; lateral grain boundaries
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Small-angle x-ray scattering (SAXS) was used to determine the structural changes in polyethylene induced by radiation. The changes in densities of the crystalline and amorphous phases, ρ c and ρ a , were calculated after direct determination of the mean square density fluctuation 〈η2〉. ρ a increases with increasing radiation dose for both linear and branched polyethylene. This accounts for the serious discrepancy between crystallinities determined from wide-angle x-ray scattering and density measurements. This study confirms our previous proposal that crosslinks occur primarily in the noncrystalline phase, most likely at the defects in the lateral grain boundary regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 269 (1991), S. 353-363 
    ISSN: 1435-1536
    Keywords: Crosslinking ; radiation ; polyethylene ; density ; crystallinity ; phasedensities ; densityfluctuation ; phasedensityfluctuations ; Crosslink locations and mechanisms ; defects ; lateral grainboundaries
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Small-angle x-ray scattering (SAXS) was used to determine density fluctuation in radiation-induced crosslinked polyethylene of varying degrees of crystallinity. Density fluctuation FL decreases with increasing crystallinity, while it increases linearly with increasing radiation dose or degree of crosslinking. By means of extrapolation, density fluctuations in the crystalline and the amorphous phasesFL c andFL a were obtained. At a given dose,FL a is greater thanFL c . The increase inFL a with radiation is found to be much greater than that ofFL c compared with the initial values at 0 Mrad,FL c showing only a negligible increase event at 312 Mrad. The present findings suggest that crosslinks are not introduced within the crystalline phase; they take place primarily in the noncrystalline phase, in agreement with the conclusions reached previously on the basis of changes in crystalline and amorphous densities in irradiated polyethylene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 23 (1977), S. 213-213 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 10 (1972), S. 1183-1191 
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In an attempt to facilitate a better understanding of the role of noncrystallizable components on the crystallization kinetics, spherulitic growth rates as well as the morphology and melting behavior of isotactic polystyrene in blends with various molecular weight atactic polystyrenes (900 to 1,800,000) over a wide range of concentrations have been studied. The growth rates are uniformly depressed with increasing amounts of atactic diluent. In addition, they are dependent on the molecular weight of the added polystyrene, generally decreasing in the molecular weight ranges between 4800 and 19,800 and between 51,000 and 1,800,000. However, between these two ranges, anomalous growth rates showing a sudden increase are observed, which may be explained by an increase in the entrapment of the noncrystallizable diluent. An explanation based on morphological observations, which showed an increase in coarseness of the spherulites with increasing molecular weight of the added atactic polystyrene, is offered.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 16 (1976), S. 138-144 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: This paper points out that interpretations from stress changes alone during oriented crystallization have led to widely different proposed chain conformations and consequently very different crystallization mechanisms for strain-induced crystallization (SIC). Many of the proposals, including the one by Keller and Machin which takes into account some electron microscopy and X-ray observations, show varying degrees of incompatibility with existing stress relaxation, kinetic or morphological data on SIC. Another problem lies in the difficulty with proper interpretation of observed morphology on samples which have been Subjected to additional thermally-induced crystallization (TIC) after SIC, especially, in the absence of prior characterization of SIC crystallites, the finding of a fibrillar-to-lamellar transformation in stretched polymers upon additional TIC (Part H) also indicates that the generally-observed oriented lamellar morphology has a much more subtle origin than-that depicted by most crystallization models. Part I discusses our previously published morphological data on the characteristics of SIC crystallites from the melt, which includes: (a) their melting point elevation, (Tm » T°m), (b) their nearly perfect crystalline orientation function (fc ∼ 1), (c) their fast rates of crystallization (t1/2 〈 1 sec), and (d) their fibrillar morphology and limited dimensions along the fibrillar stretch axis (∼100Å). Examples of morphology of SIC from the glass and from stirred solution are also included to show the overall similarity of fibrillar morphology brought about by stretching.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 19 (1979), S. 395-400 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A nucleation theory for strain-induced crystallization is formulated to explain and to predict the effects of molecular strain on crystallization kinetics and crystallite size. Unlike any current theories that have based their formulations on some assumed extended-chain line nuclei or folded-chain crystals, the present theory avoids all assumptions concerning the crystal morphology. It is based on experimental findings which indicate limited crystal growth in the strain direction, following a reciprocal dependence of crystal thickness on supercooling ΔT. (ΔT = Tmo, - T, where the equilibrium melting temperature, Tmo, is a variable dependent on degree of molecular strain prior to strain-induced crystallization.) It is predicted that the logarithm of the nucleation rate, No, is dependent on (Tmo)2/T(ΔT) or Tmo/T(ΔT), and that the critical nucleus thickness l*o is shown to be proportional to Tmo/ΔT. In addition, expressions are also presented, including examples, to show the dependence of No, l*o and Tom on degree of molecular strain, ∊, or melt entropy reduction, Δs′. Our analysis predicts that, on comparing a polyethylene crystallized in the presence of strain to one crystallized in the absence of strain at 130°C, an increase in “coil” dimension of less than about 50 percent can bring about a 104 fold increase in heterogeneous nucleation rate, a 30-40 percent reduction in critical nucleus thickness and a 10°C increase in equilibrium melting temperature. These results will be discussed and compared with available experimental evidence.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 16 (1976), S. 145-151 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Part II discusses numerous examples of a morphological fibrillar-to-lamellar transformation that has reportedly been observed in stretched polymers upon additional thermal treatment (or TIC), Stretched polymers containing initially a typical fibrillar morphology for either crystallites in cold-drawn polymers, crystallites induced by stretching, or simply non-crystalline fibrils can yield a more or less lamellar morphology after the thermally-induced transformation. There is no evidence of extended-chain crystals present in either the original fibrils or the transformed lamellae; however, the extent of the transformation is strongly dictated by the annealing conditions and the stretch ratios, and therefore the local strains on tie molecules between the crystallites. Of particular interest is the observation of lamellar formation in conjunction with decreasing stress (or increasing length) during TIG under strain. This is in conflict with the generally expected stress increase if chain folding is presumed to occur during formation of lamellae, Consequently, it leads to the conclusion that lamellae form from prefolded structures during TIC. In the light of this surprising conclusion, available evidence on the presence of structure or non-Gaussian chain segments in the amorphous state is also cited. Included are the most recent neutron scattering results from concentrated solutions of polystyrene.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 19 (1979), S. 401-405 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The empirical equation, 1/ti = AeEi/RT, which expresses the exponential dependence of the reciprocal of crystallization induction time, ti, has been analyzed and shown to be equivalent to the nucleation rate equations derived earlier in Part III (1). Consequently we have used the ti measurements obtained earlier by Krueger and Yeh to calculate not only the nucleation rate enhancements but also the melting point elevations, the relative crystal thickness changes and molecular coil extension ratios of shear-crystallization polyethylene. It is shown that polyethylene when crystallized between 129 and 131°C at shear rates between 1.56 and 9.70 sec-1 can have melting point increases of 4.2 to 7.2°C and crystal thickness decreases of 20 to 25 percent, when compared to those crystallized at 130°C in the quiescent state. The predicted “coil” extension in the melt just prior to shear-induced crystallization ranges between 21 and 36 percent. The results of these analyses as well as those on nucleation rates of polyethylene oxide are discussed in detail.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...