Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Gene 71 (1988), S. 413-420 
    ISSN: 0378-1119
    Keywords: Recombinant DNA ; Sp1 factor ; cAMP ; glucocorticoids ; insulin ; nucleotide sequence ; promoter activity
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 21 (1977), S. 1795-1800 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The rejection of calcium and/or magnesium ion by asymmetric cellulose acetate hyperfiltration membranes is increased significantly by formation of the corresponding alkaline-earth metal chelate. Typically solute fluxes are reduced by a factor of 5 consequent to chelation with ethylenediaminetetraacetic acid (EDTA) at pH 6.0. Selective chelation and, in turn, selective transport of magnesium is observed when equimolar solute mixtures corresponding to 1:1:1 magnesium:calcium:EDTA are hyperfiltered. Under these conditions, calcium successfully competes for the stoichiometrically limiting EDTA, and the rejection of magnesium is lower than the rejection observed for the hyperfiltration of the MgEDTA2- complex in the absence of competitive calcium. Alternatively, the rejection of the CaEDTA2- complex is increased under these identical conditions, presumably as a consequence of specific interactions between the available free magnesium and the cellulose acetate membrane. The effects reported here all seem to be related to reductions in solute diffusivity associated with the increased size of the alkaline-earth metal ion complex.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Rapid Communications in Mass Spectrometry 9 (1995), S. 1315-1320 
    ISSN: 0951-4198
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: Matrix-assisted laser desorption/ionization (MALDI) was used for several small proteins (such as insulin) and for peptides. It was found that the detection efficiencies of MALDI for the insulin B chain and the insulin A chain are drastically different. Similar phenomena were also observed for various types of peptides. The positive-ion signal of MALDI in detecting proteins or peptides was found to be greatly enhanced by the presence of a basic amino acid in their chains. The experimental results indicate that this enhancement may arise from proton transfer in solution by an acid-base reaction between the protein/peptide and matrix molecule. This pre-protonated mechanism provides a low energy barrier for the ionization of peptides in a MALDI process, and greatly reduces the energy threshold of MALDI. Matrix effects on the ionization mechanism are discussed.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 25 (1980), S. 323-347 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Certain organic solutes, including phenol, undergo anomalous enrichment when hyperfiltered through cellulose acetate membranes: the solute concentration is higher in the permeate than in the feed solution. A number of existing theoretical approaches describing hyperfiltration phenomena are presented and their merits and limitations upon application to the transport of phenol discussed. A new two-parameter transport relationship is derived based on an extension of the solution-diffusion model. The enrichment, or negative solute rejection by the membrane, is predicted to occur whenever the pressure-induced solute permeation velocity exceeds that of water. By acknowledging and incorporating the effect of pressure on the chemical potential of the solute, the present extended solution-diffusion model relationship successfully describes hyperfiltration data of phenol in homogeneous and asymmetric cellulose acetate membranes provided the contribution of convective flow to the overall solute transport is insignificant. In addition to the transport parameters of the extended solution-diffusion model, the transport parameters of the phenomenological, Kedem-Spiegler, and combined viscous flow-frictional relationship are evaluated from hyperfiltration data obtained with 0.05 and 0.1 wt % phenol feed solutions and homogeneous cellulose acetate membranes of different acetyl content.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 22 (1978), S. 1093-1104 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effects of chelation on the transport of calcium and magnesium, both separately and in a variety of admixtures, in a controlled series of asymmetric cellulose acetate membranes were characterized. Ethylenediaminetetraacetic acid (EDTA) and ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) were used as chelating agents for the alkaline earth metal ions. Asymmetric cellulose acetate membranes annealed at 70°, 75°, and 85°C were studied. Chelation of each of these alkaline earth metals ions in aqueous solutions at pH 6, by either EDTA or EGTA, significantly increased the overall hyperfiltration rejections of these metals by all the membranes studied. The increase in rejection varied montonically with the fraction of metal ion complexed. The higher rejection of metal chelates, compared to the rejection of unbound metal ions, was considered to be the result of the significantly larger size of the chelated species. Calculations suggested that selective (or competitive) chelation took place at pH 6 in a mixture of calcium and magnesium ions in the presence of a stoichiometrically limiting amount of chelating agent. Calcium successfully competed for most of the available chelating agent in equimolar aqueous solutions of chelating agent, calcium, and magnesium. The calcium rejection was explained primarily in terms of the effects of chelation per se on the effective size of the formed complex even in feeds comprised of these ternary solute mixtures. The complexation reaction between magnesium and EGTA is, however, so unfavorable at pH 6 that the Mg2+ ion remains uncomplexed even in the presence of an equivalent amount of EGTA. The observed increased rejection of magnesium ions, therefore, in ternary systems was explained by electroneutrality criteria and by solute-membrane interactions involving the various calcium species and the membranes.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...