Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 23 (1981), S. 1653-1659 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Protein production by Aspergillus terreus GN1 grown on 1.0% alkali-treated bagasse was studied under various cultural conditions. The maximum biomass protein content of 20.1% and protein recovery of 11.2% was obtained with an initial pH of 4.0, with 1/5 (v/v) inoculum in continuously shaken cultures grown for seven days. Protein content of the alkali-treated bagasse was 3.0%. Highest crude protein percent also corresponded with highest carboxymethyl cellulase and filter paper enzyme activities.
    Additional Material: 5 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 24 (1982), S. 2407-2417 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The fermentation of 1.0% untreated bagasse under optimum cultural and nutritional conditions with Aspergillus terreus GN1 indicated that the maximum rate of protein and cellulase production could be obtained during three days of submerged fermentation. Even though 16.4% protein recovery, 0.55 units CMCase/mL, and 0.027 FPase units/mL were obtained on the seventh day, the rates of increase in protein recovery and cellulase production were slower than those obtained up to these days, which were 14.3% protein recovery, 0.45 units CMCase/mL, and 0.019 units FPase/mL. There was an initial lag in the utilization of cellulose up to two days due to the utilization of the water-soluble carbohydrate present in untreated bagasse. Cellulose utilization and water-soluble carbohydrate content during fermentation were correlated with protein recovery and enzyme production. The protein and cellulase production during three days fermentation with 1.0% untreated and treated bagasse were compared and the protein content of the total biomass was calculated and treated bagasse were compared and the protein content of the biomass was calculated into constituent protein contributed by the fungal mycelium and the under graded bagasse. The total biomass recovered with untreated and treated bagasse was 1020 and 820 mg/g bagasse substrate, respectively, and contained 14.3 and 20.6% crude protein, respectively. The contribution of fungal biomass and under graded bagasse was 309 and 711, and 373 and 447 mg/g untreated and treated bagasse substrates, respectively. In an 8-L-flask trial during three days of fermentation, the recovery of SCP and cellulase were 66 g and 32,400 units (Sigma) for treated bagasse and 82 g and 8200 units (Sigma) for untreated bagasse, respectively.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 33 (1989), S. 948-954 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Direct saccharification of 2.64% cassava starch by Rhizopus oligosporus 145F was attempted under various cultural conditions. Maximum glucose yield of 18.0 g/L culture filtrate was obtained with an initial pH 3.8, 2% (v/v) inoculum of R. oligosporus spores, and an incubation temperature of 45°C in shake flask cultures for 48 h. This concomitantly produced 2.7 g mycelia/100g cassava starch containing 20.2% true protein. The production of glucose and mycelia was accomplished with 92.8% starch saccharification having 67.9% starch to glucose conversion efficiency.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 24 (1982), S. 109-125 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The biomass yield, cellulolytic activity, and protein recovery using Aspergillus terreus GN1 with alkali-treated sugarcane bagasse was studied using different levels (250-600 mg of N/L of broth) of organic and inorganic nitrogen sources. e.g., cattle urine, urea, cornsteep liquor, ammonium sulfate, ammonium nitrate, ammonium iron sulfate, ammonium chloride, and sodium nitrate. Among different levels of alkali-treated bagasse substrate concentrations (0.5-4.0% w/v) tested, 1.0% substrate yielded the highest crude protein content, protein recovery, and cellulolytic activity. The biomass recovery with 1.0% substrate ranged from 290-380 mg/500 mg bagasse substrate in a 50-mL broth with a nitrogen level of 250-600 mg of N/L in all the sources except ammonium iron sulfate, which yielded 402-439 mg/500 mg bagasse substrate. However, crude protein content of biomass obtained with an ammonium iron sulfate nitrogen source was the lowest. Cornsteep liquor nitrogen source at the rate of 600 mg of N/L yielded the maximum crude protein of 32.9%, protein recovery of 22.2 g/100 g of bagasse, and carboxymethyl cellulase and filter paper enzyme activities of 1.1 and 0.09 units/mL, among the organic and inorganic nitrogen sources studied. In general, the organic nitrogen sources and inorganic nonammonium nitrogen sources were utilized preferentially for protein production over the inorganic ammonium nitrogen sources. The fermentation time required under optimum cultural and nutritional conditions for A. terreus GN1 was also evaluated. The crude protein content of the biomass increased gradually up to the seventh day of fermentation, but the protein recovery rate was high up to two or three days. It was observed that the cellulose utilization rate increased after an initial lag of one day up to the third day and gradually increased further, which corresponded positively with protein content, biomass protein recovery, and cellulase enzyme activity. On the seventh day of fermentation, the crude protein content, biomass protein recovery, water-soluble carbohydrate, bagasse cellulose utilization, CMCase, and FPase activities were 32.8%, 20.1 g/100 g of bagasse, 6.2%, 82.7%, 1.0. and 0.08 U/mL, respectively. The final biomass recovered contained 32.8% crude protein content and had an in vitro rumen digestibility (IVRD) coefficient of 68.8%. The biomass contained almost all the essential and nonessential amino acids and was comparable with FAO reference protein. It is concluded that a fermentation time of 72 h gave a faster rate of protein production of 16.9 g/100 g of bagasse with 69.8% bagasse cellulose utilization with 76.0% IVRD. and contained almost all the essential and nonessential amino acids.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 24 (1982), S. 737-742 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...