Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chronic drug treatment  (1)
  • Cisapride  (1)
  • Population analysis; nucleoside transport inhibitor  (1)
  • 1
    ISSN: 1432-1041
    Keywords: Key wordsDraflazine ; Population analysis; nucleoside transport inhibitor ; non-linear red blood cell partition ing ; pharmacokinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Abstract Objective: The pharmacokinetics and non-linear red blood cell partitioning of the nucleoside transport inhibitor draflazine were investigated in 19 healthy male and female subjects (age range 22–55 years) after a 15-min i.v. infusion of 1 mg, immediately followed by infusions of variable rates (0.25, 0.5 and 1 mg · h−1) and variable duration (2–24 h). Methods: The parameters describing the capacity-limited specific binding of draflazine to the nucleoside transporters located on erythrocytes were determined by NONMEM analysis. The red blood cell nucleoside transporter occupancy of draflazine (RBC occupancy) was evaluated as a pharmacodynamic endpoint. Results: The population typical value for the dissociation constant K d (%CV) was 0.648 (12) ng · ml−1 plasma, expressing the very high affinity of draflazine for the erythrocytes. The typical value of the specific maximal binding capacity Bmax (%CV) was 155 (2) ng · ml−1 RBC. The interindividual variability (%CV) was moderate for K d (38.9%) and low for Bmax (7.8%). As a consequence, the variability in RBC occupancy of draflazine was relatively low, allowing the justification of only one infusion scheme for all subjects. The specific binding of draflazine to the red blood cells was a source of non-linearity in draflazine pharmacokinetics. Steady-state plasma concentrations of draflazine virtually increased dose-proportionally and steady state was reached at about 18 h after the start of the continuous infusion. The t1/2βaveraged 11.0–30.5 h and the mean CL from the plasma was 327 to 465 ml · min−1. The disposition of draflazine in whole blood was different from that in plasma. The mean t1/2β was 30.2 to 42.2 h and the blood CL averaged 17.4–35.6 ml · min−1. Conclusion: Although the pharmacokinetics of draflazine were non-linear, the data of the present study demonstrate that draflazine might be administered as a continuous infusion over a longer time period (e.g., 24 h). During a 15-min i.v. infusion of 1 mg, followed by an infusion of 1 mg · h−1, the RBC occupancy of draflazine was 96% or more. As the favored RBC occupancy should be almost complete, this dose regimen could be justified in patients.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1041
    Keywords: Cisapride ; pharmacokinetics ; bioavailability ; suppository ; tablet
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary The comparative bioavailability of cisapride as a 30 mg suppository and three 5 mg oral tablets was investigated in 12 non-smoking, healthy male volunteers. The two formulations were administered on two separate occasions following an overnight fast, according to a randomized cross-over design. The plasma concentration of cisapride was measured over 48 h after drug administration. The 30 mg suppository exhibited a mean time to the peak plasma concentration of 3.8 h, while the tablets showed a significantly earlier peak time of 1.5 h. The maximum plasma concentration of cisapride after the 30 mg suppository (50.3 ng · ml−1) was significantly lower than after the tablets (74.3 ng · ml−1). The AUCs following the two treatments did not differ significantly from each other. The comparative bioavailability of the 30 mg cisapride suppository in relation to the three 5 mg oral tablets was 85%, with a 95%-confidence interval of 67% to 102% (not adjusted for dose). Normalizing the mean AUC by dose, the relative bioavailability of the suppository was 43% of that of the tablet. The elimination half-life of cisapride was not significantly different following the administration of the two formulations (9.3 h for the suppository and 9.8 h for the tablet).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2072
    Keywords: Serotonin-S2 receptors ; Radioligand binding ; Receptor down regulation ; Chronic drug treatment ; Serotonin antagonist ; Ritanserin ; Setoperone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Ritanserin is a potent and selective serotonin-S2 antagonist which slowly dissociates from the receptor sites, while setoperone has potent serotonin and moderate dopamine antagonistic properties and dissociates rapidly from the receptor sites. Acute administration of ritanserin (1–10 mg/kg) produced a non-competitive inhibition of 3H-ketanserin binding, measured ex vivo in washed frontal cortex membranes, which lasted for 12 h. This is in accordance with the slow dissociation of the drug from the receptor sites. Setoperone (1–10 mg/kg orally) also produced a partially non-competitive inhibition of 3H-ketanserin binding in washed membranes, which is unlike its rapid dissociation. In contrast, there was no inhibition of dopamine receptor binding in washed striatal membranes. Chronic oral administration of 10 mg/kg·day of the drugs significantly reduced the Bmax values of 3H-ketanserin, without changing the KD value when drug-free periods were longer than 1 day. The maximum reduction following 25 days' treatment with 14 mg/kg ritanserin was 50% at 1 day drug-free; the Bmax values gradually returned to the control value in about 12 days. The receptor half-life was calculated to be 3.5 days and the receptor synthesis rate 4 fmoles/mg tissue·day. Ritanserin treatment did not alter radioligand binding to serotonin-S1, α1-, α2- and β-adrenergic, dopamine-D2, benzodiazepine and substance P sites. Chronic treatment with setoperone at 10 mg/kg·day, orally, significantly reduced the Bmax value of 3H-ketanserin binding in frontal cortex but treatment with 1 mg/kg·day did not. In contrast, a dose-dependent increase in the number of striatal dopamine-D2 sites was observed, in accordance with the moderate dopamine-antagonistic properties of setoperone. Dopamine-D2 receptor up regulation up to 150% of control values, was maintained at the same level for 9 days, it started to decline 12 days after stopping drug treatment. Following chronic treatment and drug withdrawal for more than 1 day, ritanserin and setoperone levels in whole brain homogenates were below detection level (〈1 ng/g). The similar reduction in the Bmax values of 3H-ketanserin binding following chronic treatment with the rapidly dissociating setoperone and the slowly dissociating ritanserin, the absence of effect on the KD value, the slow reappearance of the receptor sites and the opposite effect on serotonin-S2 and dopamine-D2 receptors with setoperone suggest that real serotonin-S2 receptor down regulation occurs following antagonist treatment. The findings illustrate the difference in receptor regulation between the serotonergic and the dopaminergic system. The specific serotonin-S2 receptor down regulation produced by serotonin antagonists is probably achieved via drug interference with intracellular processes. In view of the hypothesis that supersensitive serotonin-S2 receptor sites may be involved in the etiology of certain mood disorders, acute blockade of these receptors followed by receptor down regulation may be beneficial for the treatment of such diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...