Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cluster conversion  (1)
  • Electron paramagnetic resonance  (1)
  • 1
    ISSN: 1432-1327
    Keywords: Key words Site-directed mutagenesis ; Iron-sulfur ; Ligand exchange ; Cluster conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  Cysteine is the ubiquitous ligand of iron-sulfur clusters in proteins, although chemical models have indicated that functional groups other than thiolates can coordinate iron in iron-sulfur compounds. Only a small number of naturally occurring examples of hydroxyl, histidinyl or carboxyl coordination have been clearly established but many others are suspected. Quite a few site-directed mutagenesis experiments have been aimed at replacing the cysteine ligands of iron-sulfur centers by other amino acids in various systems. The available data set shows that substituting one ligand, even by another functional residue, is very often destabilizing enough to impair cluster assembly; in some cases, the apoprotein cannot even be detected. One for one replacements have been demonstrated, but they have been so far almost exclusively confined to clusters with no more than one or two iron atoms. In contrast, changes of the cluster nuclearity or recruitment of free cysteine residues seem preferred ways for proteins containing larger clusters to cope with removal of a ligand, rather than using coordinating amino acids bearing different chemical functions. Furthermore, the possibility of replacing cysteines by other residues as ligands in iron-sulfur proteins does not uniquely depend on the ability of the cluster to accept other kinds of coordination than cysteinate; other factors such as the local flexibility of the polypeptide chain, the accessibility of the solvent and the electronic distribution on the active centers may also play a prominent role.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1327
    Keywords: Key words Rubredoxin ; Mössbauer ; Electron paramagnetic resonance ; Magnetic circular dichroism ; Radiolytic reduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Rubredoxins contain a mononuclear iron tetrahedrally coordinated by four cysteinyl sulfurs. We have studied the wild-type protein from Clostridium pasteurianum and two mutated forms, C9S and C42S, in the oxidized and reduced states, with Mössbauer, integer-spin EPR, and magnetic circular dichroism (MCD) spectroscopies. The Mössbauer spectra of the ferric C42S and C9S mutant forms yielded zero-field splittings, D=1.2 cm−1, that are about 40% smaller than the D-value of the wild-type protein. The 57Fe hyperfine coupling constants were found to be ca. 8% larger than those of the wild-type proteins. The present study also revealed that the ferric wild-type protein has δ=0.24±0.01 mm/s at 4.2 K rather than δ=0.32 mm/s as reported in the literature. The Mössbauer spectra of both dithionite-reduced mutant proteins revealed the presence of two ferrous forms, A and B. These forms have isomer shifts δ=0.79 mm/s at 4.2 K, consistent with tetrahedral Fe2+(Cys)3(O-R) coordination. The zero-field splittings of the two forms differ substantially; we found D=−7±1 cm−1, E/D=0.09 for form A and D=+6.2±1.3 cm−1, E/D=0.15 for form B. Form A exhibits a well-defined integer-spin EPR signal; from studies at X- and Q-band we obtained g z =2.08±0.01, which is the first measured g-value for any ferrous rubredoxin. It is known from X-ray crystallographic studies that ferric C42S rubredoxin is coordinated by a serine oxygen. We achieved 75% reduction of C42S rubredoxin by irradiating an oxidized sample at 77 K with synchrotron X-rays; the radiolytic reduction produced exclusively form A, suggesting that this form represents a serine-bound Fe2+ site. Studies in different buffers in the pH 6–9 range showed that the A:B ratios, but not the spectral parameters of A and B, are buffer dependent, but no systematic variation of the ratio of the two forms with pH was observed. The presence of glycerol (30–50% v/v) was found to favor the B form. Previous absorption and circular dichroism studies of reduced wild-type rubredoxin have suggested d-d bands at 7400, 6000, and 3700 cm−1. Our low-temperature MCD measurements place the two high-energy transitions at ca. 5900 and 6300 cm−1; a third d-d transition, if present, must occur with energy lower than 3300 cm−1. The mutant proteins have d-d transitions at slightly lower energy, namely 5730, 6100 cm−1 in form A and 5350, 6380 cm−1 in form B.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...