Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cu/MgO heterophase interface  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Interface science 1 (1993), S. 61-75 
    ISSN: 1573-2746
    Keywords: Metal/ceramic interface ; internal oxidation ; Cu/MgO heterophase interface ; high resolution electron microscopy ; atom-probe field-ion microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The chemical composition profile across a Cu/MgO {111}-type heterophase interface, produced by the internal oxidation of a Cu(Mg) single-phase alloy at 1173 K, is measured via atom-probe field-ion microscopy with a spatial resolution of 0.121 nm; this resolution is equal to the interplanar spacing of the {222} MgO planes. In particular, we demonstrate directly that the bonding across a Cu/MgO {111}-type heterophase interface, along a 〈111〉 direction common to both the Cu matrix and an MgO precipitate, has the sequence Cu|O|Mg... and not Cu|Mg|O...; this result is achieved without any deconvolution of the experimental data. Before determining this chemical sequence, it was established, via high-resolution electron microscopy, that the morphology of an MgO precipitate in a Cu matrix is an octahedron faceted on {111} planes with a cube-on-cube relationship between a precipitate and the matrix; that is, {111}Cu//{222}MgO and 〈110〉Cu // 〈110〉MgO.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...