Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biophysical Chemistry 29 (1988), S. 155-159 
    ISSN: 0301-4622
    Keywords: (Phormidium uncinatum) ; Cyanobacteria ; Electric gradient ; Gating channel ; Phobic response ; Phototaxis ; Proton-motive force
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Biochemical and Biophysical Methods 22 (1991), S. 289-300 
    ISSN: 0165-022X
    Keywords: Cyanobacteria ; Image analysis ; Motility ; Phormidium uncinatum ; Photodynamic reaction ; Time-lapse vide ; Velocity
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Planta 163 (1985), S. 424-429 
    ISSN: 1432-2048
    Keywords: Cyanobacteria ; Glucosyl-glycerol ; Osmotic adjustment ; Spirulina
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The filamentous cyanobacterium Spirulina platensis has been examined for salt tolerance and osmotic adjustment. Salinities up to 150% seawater had little effect on growth yield or photosynthetic O2 evolution; higher salinities were markedly inhibitory. Osmotic adjustment was achieved by the intracellular accumulation of the low-molecular-weight carbohydrate glucosyl-glycerol in response to increased external salinity: in fullstrength (100%) seawater glucosyl-glycerol accounted for approximately 5.0% of the dry weight of the cyanobacterium. Trehalose was also present, particularly in cells at low salt concentration, and in 50% seawater medium accounted for up to 1.0% of the dry weight of the cyanobacterium. For cells grown in 100% seawater the ratio of trehalose to glucosyl-glycerol varied with temperature: at 37°C trehalose comprised 31% (w/w) of the low-molecular-weight carbohydrates while at 20°C only 9% of the total was trehalose. When subjected to hypo-osmotic shock the intracellular concentration of glucosyl-glycerol decreased and this was mirrored by an increase in glycogen. An understanding of the osmotic adjustment of S. platensis has implications both for the mass culturing of this and other strains of Spirulina and possibly also for the quality of the harvested product.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Planta 151 (1981), S. 256-264 
    ISSN: 1432-2048
    Keywords: Cyanobacteria ; (dark) CO2 fixation ; Lichens ; Nitrogenase ; Pettigera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The lichen Peltigera aphthosa consists of a fungus and green alga (Coccomyxa) in the main thallus and of a Nostoc located in superficial packets, intermixed with fungus, called cephalodia. Dark nitrogenase activity (acetylene reduction) of lichen discs (of alga, fungus and Nostoc) and of excised cephalodia was sustained at higher rates and for longer than was the dark nitrogenase activity of the isolated Nostoc growing exponentially. Dark nitrogenase activity of the symbiotic Nostoc was supported by the catabolism of polyglucose accumulated in the ligh and which in darkness served to supply ATP and reductant. The decrease in glucose content of the cephalodia paralleled the decline in dark nitrogenase activity in the presence of CO2; in the absence of CO2 dark nitrogenase activity declined faster although the rate of glucose loss was similar in the presence and absence of CO2. Dark CO2 fixation, which after 30 min in darkness represented 17 and 20% of the light rates of discs and cephalodia, respectively, also facilitated dark nitrogenase activity. The isolated Nostoc, the Coccomyxa and the excised fungus all fixed CO2 in the dark; in the lichen most dark CO2 fixation was probably due to the fungus. Kinetic studies using discs or cephalodia showed highest initial incorporation of 14CO2 in the dark in to oxaloacetate, aspartate, malate and fumarate; incorporation in to alanine and citrulline was low; incorporation in to sugar phosphates, phosphoglyceric acid and sugar alcohols was not significant. Substantial activities of the enzymes phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and carbamoyl-phosphate synthase (EC 2.7.2.5 and 2.7.2.9) were detected but the activities of PEP carboxykinase (EC 4.1.1.49) and PEP carboxyphosphotransferase (EC 4.1.1.38) were negligible. In the dark nitrogenase activity by the cephalodia, but not by the free-living Nostoc, declined more rapidly in the absence than in the presence of CO2 in the gas phase. Exogenous NH 4 + inhibited nitrogenase activity by cephalodia in the dark especially in the absence of CO2 but had no effect in the light. The overall data suggest that in the lichen dark CO2 fixation by the fungus may provide carbon skeletons which accept NH 4 + released by the cyanobacterium and that in the absence of CO2, NH 4 + directly, or indirectly via a mechanism which involves glutamine synthetase, inhibits nitrogenase activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Amino acid liberation ; Anabaena variabilis ; Aromatic amino acid biosynthesis ; Cyanobacteria ; DAHP synthase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mutant strains of Anabaena variabilis which are resistant to the tryptophan analogue, 6-fluorotryptophan, liberated a wide range of amino acids although none liberated tryptophan in detectable quantities. Four strains (FT-7, FT-8, FT-9, FT-10) produced predominantly alanine together with small amounts of phenylalamine and tyrosine, strain FT-2 liberated mainly phenylalanine and tyrosine and strain FT-6 liberated mainly glutamate, NH 4 + and several unidentified ninhydrin-positive compounds. Two forms of 3-deoxy-D-arbinoheptulosonate 7-phosphate (DAHP) synthase were identified in the parent strain, a tyrosine-sensitive form and a phenylalanine-sensitive form. In strains FT-2 and FT-6 the phenylalanine-sensitive enzyme was not detected and in strain FT-7 it was apparently deregulated with respect to inhibition by phenylalanine. No deregulation of anthranilate synthase was observed but mutant strains were found to have higher specific activities of this enzyme than the parent strain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Blue-green algae ; Cyanobacteria ; Glutamine synthetase ; Light-modulation ; Anabaena cylindrica ; NH 4 + -deactivation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Extractable glutamine synthetase activity of the cyanobacterium Anabaena cylindrica was reduced by approximately 50% when N2-fixing cultures were treated with 10 mM NH 4 + or were placed in darkness. The deactivated enzyme could be rapidly reactivated (within 5 min) by adding 40 mM 2-mercaptoethanol to the biosynthetic reaction mixture. The enzyme could also be reactivated in vivo by replacing the culture in light or by removing NH 4 + . When the enzyme was deactivated by simultaneously adding NH 4 + and placing the culture in darkness, reactivation occurred on reillumination and removal of NH 4 + . The removal of NH 4 + in darkness did not result in reactivation. On in vitro reactivation of glutamine synthetase from dark or NH 4 + -treated cultures the maximum glutamine synthetase activity observed frequently exceeded that of glutamine synthetase extracted from untreated cultures. Anacystis nidulans showed a similar type of reversible dark deactivation to A. cylindrica but Plectonema boryanum and a Nostoc did not. With A. cylindrica, a direct positive correlation between the size of the intracellular pool of glutamate and biosynthetic glutamine synthetase activity occurred during light/dark shifts, and on treatment with NH 4 + . The changes in activity of glutamine synthetase in A. cylindrica in response to light resemble in some respects the light modulation of enzymes of the oxidative and reductive pentose phosphate pathways noted in cyanobacteria by others.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 137 (1984), S. 241-246 
    ISSN: 1432-072X
    Keywords: Ammonium transport ; Anabaena azollae ; Anabaena variabilis ; Cyanobacteria ; Methylammonium transport ; Symbiosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The free-living cyanobacterium Anabaena variabilis showed a biphasic pattern of 14CH3NH 3 + uptake. Initial accumulation (up to 60 s) was independent of CH3NH 3 + metabolism, but long-term uptake was dependent on its metabolism via glutamine synthetase (GS). The CH3NH 3 + was converted into methylglutamine which was not further metabolised. The addition of l-methionine-dl-sulphoximine (MSX), to inhibit GS, inhibited CH3NH 3 + metabolism, but did not affect the CH3NH 3 + transport system. NH 4 + , when added after the addition of 14CH3NH 3 + , caused the efflux of free CH3NH 3 + ; when added before 14CH3NH 3 + , NH 4 + inhibited its uptake indicating that both NH 4 + and CH3NH 3 + share a common transport system. Carbonylcyanide m-chlorophenylhydrazone and triphenyl-methylphosphonium both inhibited CH3NH 3 + accumulation indicating that the transport system was Δψ-dependent. At pH 7 and at an external CH3NH 3 + concentration of 30 μmol dm-3, A. variabilis showed a 40-fold intracellular accumulation of CH3NH 3 + (internal concentration 1.4 mmol dm-3). Packets of the symbiotic cyanobacterium Anabaena azollae, directly isolated from the water fern Azolla caroliniana, also showed a Δψ-dependent NH 4 + transport system suggesting that the reduced inhibitory effect of NH 4 + on nitrogenase cannot be attributed to the absence of an NH 4 + transport system but is probably related to the reduced GS activity of the cyanobiont.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 143 (1986), S. 353-358 
    ISSN: 1432-072X
    Keywords: Ammonium transport ; Cyanobacteria ; Glutamine synthetase ; Methionine sulphoximine ; Methylammonium transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cyanobacteria Anabaena variabilis and Nostoc CAN showed a biphasic pattern of 14CH3NH 3 + uptake at external pH values of 7.0 and 9.0. The initial phase of uptake, which was independent of metabolism of 14CH3NH 3 + , was attributed to uptake via a CH3NH 3 + (NH 4 + ) transport system at pH 7.0 and probably to passive diffusion of uncharged CH3NH2 and trapping by protonation at pH 9.0. The second slower phase of uptake was attributed to metabolism of CH3NH 3 + via glutamine synthetase to form γ-methylglutamine which accumulates. Anabaena cylindrica showed an initial rapid uptake at pH 7.0 and pH 9.0 but metabolism of 14CH3NH 3 + was undetectable at pH 7.0 and was barely detectable at pH 9.0. Pretreatment of A. variabilis with l-methionine-d,l-sulphoximine to inactivate glutamine synthetase, inhibited the second phase of 14CH3NH 3 + uptake at both pH 7.0 and pH 9.0 and the accumulation of γ-methylglutamine but had no effect on the first phase of uptake. Following transfer of A. variabilis to darkness the initial phase of 14CH3NH 3 + uptake at pH 7.0 and 9.0 was unaffected but the subsequent metabolism via glutamine synthetase was inhibited.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-072X
    Keywords: Aphanothece halophytica ; Cyanobacteria ; Glycine betaine ; Halotolerance ; Osmotic stress ; Transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Uptake of exogenous 14C-glycine betaine has been followed in the cyanobacterium Aphanothece halophytica and other species able to synthesise glycine betaine in response to osmotic stress. At 1 mmol dm−3 uptake was rapid (flux rate=29.50 nmol m−2 s−1), equilibrating at an internal concentration of 120 mmol dm−3 within 30 min. This rapid uptake, coupled with high internal accumulation, was characteristic of glycine betaine-synthesising cyanobacteria only. The 14C-glycine betaine transported was not catabolised. Kinetic studies indicated a Michaelis-Menten type relationship (K m=2.0 μmol dm−3, V max=45 nmol min−1 mm−3 cell volume), with a pH optimum of 8.0–8.5. Darkness dramatically decreased the flux rate. Higher 14C-glycine betaine levels occurred in cells growth in medium of elevated osmotic strength, and glycine betaine uptake was sensitive to changes in external salinity. A relationship between Na+ availability and glycine betaine uptake was observed, with 〉80 mmol dm−3 Na+ required for optimal stimulation of uptake in seawater-grown cells. Severe hyperosmotic stress (1000 mmol dm−3 NaCl) reduced the rate of glycine betaine uptake but increased internal glycine betaine concentration at equilibrium. Hypo-osmotic stress caused a decline in the internal glycine betaine concentration due to an increased rate of loss, indicating that the efflux system was also sensitive to ambient salinity changes. It is envisaged that this active transport system may be an adaptive mechanism in halophilic glycine betaine-synthesising cyanobacteria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 138 (1984), S. 333-337 
    ISSN: 1432-072X
    Keywords: Cyanobacteria ; Osmotic adjustment ; Osmoregulation ; Quaternary ammonium compounds ; Glycine betaine ; Halotolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The intracellular concentrations of the monovalent inorganic cations K+ and Na+, low molecular weight carbohydrates and quaternary ammonium compounds have been determined for 4 strains of cyanobacteria (Aphanothece halophytica, Coccochloris elabens, Dactylococcopsis salina and Synechocystis DUN52) originally isolated from hypersaline habitats (i.e. habitats with a salinity greater than that of seawater) over a range of external salt concentration (from 50% to 400% seawater). Intracellular cation levels (Na+ and K+) were determined to be within the range 80–320 mmol · dm-3 (cell volume), showing only minor changes in response to salinity. Intracellular carbohydrates were found to comprise a negligible component of the intracellular osmotic potential [at 2–19 mmol · dm-3 (cell volume)], throughout the salinity range. Quaternary ammonium compounds, however, were recorded in osmotically significant quantities [up to 1,640 mmol · dm-3 (cell volume)] in these strains, showing major variation in response to salinity. Thus Synechocystis DUN 52 showed an increase in quaternary ammonium compounds in the oder of 1,200 mmol · dm-3 between 50% and 400% seawater medium, accounting for a significant proportion of the change in external osmotic potential. Examination of intact cells and cell extracts using 13C and 1H nuclear magnetic resonance (NMR) spectroscopy confirmed the presence of the quaternary ammonium compound glycine betaine as the major osmoticum in the 4 strains; no other compounds were detected during NMR assays. These results suggest a common mechanism of osmotic adjustment, involving quaternary ammonium compounds, in cyanobacteria from hypersaline environments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...