Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: Adenosine ; Phenylisopropyladenosine ; Negative inotropic effect ; Cyclic AMP ; Ventricular myocardium of the dog
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Experiments were carried out to characterize the adenosine-induced negative inotropic effect in relation to the extent of β-adrenoceptor activation in the isolated dog left ventricular myocardium. Adenosine and R-N6-phenylisopropyladenosine inhibited the positive inotropic effect of isoprenaline (10−7 mol/1 and lower) about 20% of its maximal response, which was antagonized by an A1 adenosine receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine in a concentration-dependent manner. The negative inotropic effect of adenosine disappeared and that of R-N6-phenylisopro-pyl-adenosine decreased when the isoprenaline concentration was elevated to the level higher than 10−7 mol/1. Adenosine deaminase (1.5 U/ml) that abolished the negative inotropic effect of adenosine enhanced the effect of R-N6-phenylisopropyladenosine, indicating that endogenous adenosine released by high isoprenaline concentration (10−6 mol/1) modulates the interaction. The maximal response to adenosine and R-N6-phenylisopro-pyladenosine determined in the presence of 10−7 mol/1 isoprenaline was 50% of that of carbachol which elicited the maximal inhibition even in the presence of 10−6 mol/1 isoprenaline. The negative inotropic effects of R-N6-phenylisopropyladenosine and carbachol were additive to the maximal response equivalent to that of carbachol. The difference in the efficiency between the adenosine and muscarinic receptor agonists may be partly ascribed to the difference in densities of the respective receptors in the dog ventricular myocardium. The negative inotropic effect of R-N6-phenylisopropyladenosine in the presence of isoprenaline was associated with decrease in cyclic AMP levels elevated previously by isoprenaline. The elevation of cyclic AMP levels caused by isoprenaline (3 × 10−7 mol/1) was abolished by R-N6-phenylisopro-pyladenosine (10−4 mol/1), while the contractile response was reduced only by 30% with R-N6-phenylisopro-pyladenosine. In the absence of β-adrenoceptor stimulation R-N6-phenylisopropyladenosine elicited a negative inotropic effect without changes in cyclic AMP levels, but this effect was less than 10% of the basal force of contraction. It is concluded that in the dog ventricular myocardium adenosine receptors play a role for the inhibitory regulation of contractility, which is influenced markedly by the pre-existing level of β-adrenoceptor activation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 341 (1990), S. 206-214 
    ISSN: 1432-1912
    Keywords: Calcium antagonists ; α-Adrenoceptors ; β-Adrenoceptors ; Positive inotropic effect ; Rabbit ventricular myocardium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Experiments were carried out to elucidate the mechanism that the positive inotropic effect mediated by α1-adrenoceptors is more susceptible to organic calcium antagonists than the β-adrenoceptor-mediated effect. Verapamil and diltiazem displaced the specific binding of [3H]prazosin to the membrane fraction derived from the rabbit ventricular myocardium, verapamil being about 70 times more potent than diltiazem. Nifedipine did not displace the binding. While these compounds suppressed the positive inotropic effect mediated via αl-adrenoceptors in α1- concentration-dependent manner, there was no correlation between the potency of the compounds to displace the [3H]prazosin binding and to inhibit the α-mediated positive inotropic effect. The relative potency of three calcium antagonists to decrease the basal force of contraction and the al-mediated effect (of the same extent as compared to basal force of contraction) was consistent to each other. The positive inotropic effect mediated by β-adrenoceptors was inhibited much less, and was enhanced by low concentrations of organic calcium antagonists. The differential action of calcium antagonists on the α- and β-mediated positive inotropic effect was mimicked by lowering the extracellular calcium concentration to 1/2, 1/4 and 1/8 of that in normal Krebs-Henseleit solution (2.5 mmol/l). These results indicate that the α1-adrenoceptor blocking activity does not play an essential role for the preferential inhibition of α-mediated positive inotropic effect by organic calcium antagonists. Difference in the subcellular mechanism involved in mobilization of intracellular Ca2+ subsequent to α1-and β-adrenoceptor activation may be responsible for the differential inhibitory action of calcium antagonists in the rabbit heart.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...