Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical chemistry accounts 84 (1993), S. 353-361 
    ISSN: 1432-2234
    Keywords: Defects ; Solids ; Non-metals ; MIMD parallelism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary A general method for the study of point and extended defects in non-metals has been formulated and a substantial computer program generated to allow the study of such systems in a routine manner. This method requires only a single ansatz; this is the effect of the defect in question is appreciable only in the immediate proximity of the defect. Beyond this region, the influence of the defect may be obtained from a simple response theory, which may be linear but is not required to be so. This response is manifested as a displacement of the ion cores and by the polarization of these atoms. This situation is considered in a mathematically rigorous extension of the local orbitals method of Adams-Gilbert-Kunz, using the approach defined by Kunz-Klein. This approach ultimately defines the system in terms of building blocks for the system, which may be defined in some arbitrary way. These building blocks form a natural point for parallelization of a computer code, and such has been simply accomplished. Each building block in turn is studied using slightly modified quantum chemical techniques at the Hartree-Fock and Moller-Plesset levels. These techniques are also parallelizable and such has been done. Thus a potential two levels of parallelization may be used here, and this makes possible an ultimate use of large-scale MIMD parallelism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...